Skip to main content
Log in

Features of Polar Substorms: An Analysis of Individual Events

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Polar substorms include substorms observed at geomagnetic latitudes above 70° MLAT in the absence of simultaneous negative magnetic bays at lower latitudes, that is, substorms on the compressed contracted auroral oval. The general morphological features of polar substorms are considered based on the example of individual events registered on Svalbard arch. It is shown that polar substorms, like “classical” substorms, are characterized by the formation of a substorm current wedge and a steplike movement to the pole after the onset of a substorm, generation of Pi2 geomagnetic pulsations, and an increase of the PC-index of the polar cap before the onset of the substorm. At the same time, there are certain differences between polar substorms and “classical” substorms; namely, they start on more distant L-shells, develop in the region of a contracted auroral oval, occur at earlier pre-midnight hours, and generate only at low solar wind speeds and weakly disturbed geomagnetic conditions. It has been suggested that polar substorms may be a specific type of “classical” substorms that develop in the evening sector under magnetically quiet or weakly disturbed conditions when the auroral oval is concracted. The source of polar substorms may also be a local intensification of previously existing substorms in the post-midnight sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 1964, vol. 12, no. 4, pp. 273–282. https://doi.org/10.1016/0032-0633(64)90151-5

    Article  Google Scholar 

  2. Akasofu, S.-L., Perreault, P.D., Yasuhara, F., and Meng, C.-I., Auroral substorms and the interplanetary magnetic field, J. Geophys. Res., 1973, vol. 78, no. 31, pp. 7490–7508. https://doi.org/10.1029/JA078i031p07490

    Article  Google Scholar 

  3. Akasofu, S.-I., Where is the magnetic energy for the expansion phase of auroral substorms accumulated? 2. The main body, not the magnetotail, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 8479–8487. https://doi.org/10.1002/2016JA023074

    Article  Google Scholar 

  4. Anderson, B.J., Takahashi, K., Kamei, T., Waters, C.L., and Toth, B.A., Birkeland current system key parameters derived from iridium observations: Method and initial validation results, J. Geophys. Res., 2002, vol. 107, p. 1079. https://doi.org/10.1029/2001JA000080

    Article  Google Scholar 

  5. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth Planets Space, 2015, vol. 67, p. 166. https://doi.org/10.1186/s40623-015-0336-6

    Article  Google Scholar 

  6. Antonova, E.E., Stepanova, M., Kirpichev, I.P., et al., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2016, vol. 177, pp. 103–114. https://doi.org/10.1016/j.jastp.2017.10.013

    Article  Google Scholar 

  7. Antonova, E.E., Stepanova, M.V., and Kirpichev, I.P., Main features of magnetospheric dynamics in the conditions of pressure balance, J. Atmos. Sol.-Terr. Phys., 2023, vol. 242. https://doi.org/10.1016/j.jastp.2022.105994

  8. Clausen, L.B.N., Baker, J.B.H., Ruohoniemi, J.M., Milan, S.E., and Anderson, B.J., Dynamics of the region 1Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), J. Geophys. Res., 2012, vol. 117, A06233. https://doi.org/10.1029/2012JA017666

    Article  Google Scholar 

  9. Despirak, I.V., Lyubchich, A.A., Biernat, H.K., and Yahnin, A.G., Poleward expansion of the westward electrojet depending on the solar wind and IMF parameters, Geomagn. Aeron. (Engl. Transl.), 2008, vol. 48, no. 3, pp. 284–292.

  10. Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Polar and high latitude substorms and solar wind conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 5, pp. 575–582. https://doi.org/10.1134/S0016793214050041

  11. Despirak, I.V., Lubchich, A.A., and Kleimenova, N.G., High-latitude substorm dependence on space weather conditions in solar cycle 23 and 24 (SC23 and SC24), J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 54–62. https://doi.org/10.1016/j.jastp.2017.09.011

    Article  Google Scholar 

  12. Despirak, I.V., Lyubchich, A.A., and Kleimenova, N.G., Supersubstorms and conditions in the solar wind, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 2, pp. 170–176. https://doi.org/10.1134/S0016793219020075

  13. Despirak, I.B., Kleimenova, N.G., Lyubchich, A.A, Malysheva, L.M., Gromova, L.I., Roldugin, A.V., and Kozelov, B.V., Magnetic Substorms and Auroras at the Polar Latitudes of Spitsbergen: Events of December 17, 2012, Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 3, pp. 266–274. https://doi.org/10.3103/S1062873822030091

    Article  Google Scholar 

  14. Dmitrieva, N.P. and Sergeev, V.A., Appearance of an auroral electrojet at polar cap latitudes: characteristics of the phenomenon and the possibility of its use for diagnostics of large-scale high-speed solar wind streams, Magnitos. Issled., 1094, no. 3, pp. 58–66.

  15. Fel’dshtein, Ya.I., Some problems of the morphology of polar glow and magnetic disturbances at high latitudes, Geomagn. Aeron., 1963, vol. 3, no. 2, pp. 227–239.

    Google Scholar 

  16. Feldstein, Y.I. and Starkov, G.V., Dynamics of auroral belt and geomagnetic disturbances, Planet. Space Sci., 1967, vol. 15, pp. 209–229. https://doi.org/10.1016/0032-0633(67)90190-0

    Article  Google Scholar 

  17. Frey, H.U., Mende, S.B., Angelopoulos, V., and Donovan, E.F., Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 2004, vol. 109, A10304. https://doi.org/10.1029/2004JA010607

    Article  Google Scholar 

  18. Hones, E.W., The poleward leap of the auroral electrojet as seen in auroral images, J. Geophys. Res., 1985, vol. 90, pp. 5333–5337. https://doi.org/10.1029/JA090iA06p05333

    Article  Google Scholar 

  19. Hones, E.W., Akasofu, S.-I., Jr., Bame, S.J., and Singer, S., Poleward expansion of the auroral oval and associated phenomena in the magnetotail during auroral substorms, 2, J. Geophys. Res., 1971, vol. 76, pp. 8241–8257. https://doi.org/10.1029/JA076i034p08241

    Article  Google Scholar 

  20. Horning, B.L., McPherron, R.L., and Jackson, D.D., Application of linear inverse theory to a line current model of substorm current systems, J. Geophys. Res., 1974, vol. 9, no. 34, pp. 5202–5210. https://doi.org/10.1029/JA079i034p05202

    Article  Google Scholar 

  21. Iijima, T. and Potemra, T.A., Large-scale characteristics of field aligned currents associated with substorms, J. Geophys. Res., vol. 83, no. 2, pp. 599–615. https://doi.org/10.1029/JA083iA02p00599

  22. Keiling, A. and Takahashi, K., Review of Pi2 models, Space Sci. Rev., 2011, vol. 161, pp. 63–148.

    Article  Google Scholar 

  23. Kepko, L., McPherron, R.L., Amm, O., et al., Substorm current wedge revisited, Space Sci. Rev., 2015, vol. 190, pp. 1–46. https://doi.org/10.1007/s11214-014-0124-9

    Article  Google Scholar 

  24. Kleimenova, N.G., Antonova, E.E., Kozyreva, O.V., Malysheva, L.M., Kornilova, T.A., and Kornilov, I.A., Wave structure of magnetic substorms at high latitudes, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 746–754. https://doi.org/10.1134/S0016793212060059

  25. Loomer, E.I. and Gupta, J.C., Some characteristics of high latitude substorms, J. Atmos. Terr. Phys., 1980, vol. 42, pp. 645–652.

    Article  Google Scholar 

  26. Lui, A.T.Y., Perreault, P.D., Akasofu, S.-I., and Anger, C.D., The diffuse aurora, Planet. Space Sci., 1973, vol. 21, no. 5, pp. 857–861. https://doi.org/10.1016/0032-0633(73)90102-5

    Article  Google Scholar 

  27. Lui, A.T.Y., Akasofu, S.-I., Hones, E.W., Jr., Bame, S.J., and McIlwain, C.E., Observation of the plasma sheet during a contracted oval substorm in the prolonged quiet period, J. Geophys. Res., 1976, vol. 81, no. 7, pp. 1415–1419. https://doi.org/10.1029/JA081i007p01415

    Article  Google Scholar 

  28. McPherron, R.L., Russell, C.T., and Aubry, M.P., Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 1973, vol. 78, no. 16, pp. 3131–3149. https://doi.org/10.1029/ja078i016p03131.

  29. Mende, S.B., Frey, H.U., Geller, S.P., and Doolittle, J.H., Multi-station observations of auroras: Polar cap substorms, J. Geophys. Res., 1999, vol. 104, no. A2, pp. 2333–2342. https://doi.org/10.1029/1998JA900084

    Article  Google Scholar 

  30. Mende, S.B., Heetderks, H., Frey, H.U., et al., Far ultraviolet imaging from the image spacecraft.1. System design, Space Sci. Rev., 2000, vol. 91, pp. 243–270.

    Article  Google Scholar 

  31. Milan, S.E., Boakes, P.D., and Hubert, B., Response of the expanding/contracting polar cap to weak and strong solar wind driving: implications for substorm onset, J. Geophys. Res., 2008, vol. 113, A09215. https://doi.org/10.1029/2008JA013340

    Article  Google Scholar 

  32. Milan, S.E., Grocott, A., and Hubert, B., A superposed epoch analysis of auroral evolution during substorms: Local time of onset region, J. Geophys. Res., 2010, vol. 115, A00I04. https://doi.org/10.1029/2010JA015663

    Article  Google Scholar 

  33. Newell, P.T., Feldstein, Y.I., Galperin, Y.I., and Meng, C.-I., Morphology of night-side precipitation, J. Geophys. Res., 1996, vol. 101, 10737–10748. https://doi.org/10.1029/95JA03516

    Article  Google Scholar 

  34. Nielsen, E., Bamber, J., Chen, Z.-S., Brekke, A., Egeland, A., Murphree, J.S., Venkatesan, D., and Axford, W.I., Substorm expansion into the polar cap, Ann. Geophys., 1988, vol. 6, no. 5, pp. 559–572.

    Google Scholar 

  35. Olson, J.V., Pi2 pulsations and substorm onsets: A review, J. Geophys. Res., 1999, vol. 104, pp. 17499–17520.

    Article  Google Scholar 

  36. Pashin, A.B., Glabmeier, K.H., Baumjohann, W., Raspopov, O.M., Yahnin, A.G., Opgenoorth, H.J., and Pellinen, R.J., Pi2 magnetic pulsations, auroral breakups, and the substorm current wedge: A case study, J. Geophys., 1982, vol. 51, pp. 223–233.

    Google Scholar 

  37. Pudovkin, M.I., Raspopov, O.M., and Kleimenova, N.G., Vozmushcheniya elektromagnitnogo polya Zemli (Disturbances in the Earth’s Electromagnetic Field), vol. 2: Korotkoperiodicheskie kolebaniya geomagnitnogo polya (Short-Period Oscillations in the Geomagnetic Field), Leningrad: LGU, 1976.

  38. Pytte, T., McPherron, R.L., Kivelson, M.G., Wes, H.I., Jr., and Hones, E.W., Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral zone activity, J. Geophys. Res., 1978, vol. 83, pp. 5256–5268. https://doi.org/10.1029/JA083iA11p05256

    Article  Google Scholar 

  39. Safargaleev, V.V., Mitrofanov, V.M., and Kozlovskii, A.E., Complex analysis of the polar substorm based on magnetic, optical, and radar observations near Spitsbergen, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 4, pp. 793–808. https://doi.org/10.1134/S0016793218040151

  40. Safargaleev, V.V., Kozlovsky, A.E., and Mitrofanov, V.M., Polar substorm on 7 December 2015: Preonset phenomena and features of auroral breakup, Ann. Geophys., 2020, vol. 38, no. 4, pp. 901–918. https://doi.org/10.5194/angeo-38-901-2020

    Article  Google Scholar 

  41. Saito, T., Geomagnetic pulsations, Space Sci. Rev., 1969, vol. 10, pp. 319–412. https://doi.org/10.1007/BF00203620

    Article  Google Scholar 

  42. Saito, T., Yumoto, K., and Koyama, Y., Magnetic pulsation Pi2 as a sensitive indicator of magnetospheric substorm, Planet. Space Sci., 1976, vol. 24, pp. 1025–1029.

    Article  Google Scholar 

  43. Sergeev, V.A., On the longitudinal localization of the substorm active region and its changes during the substorm, Planet. Space Sci., 1974, vol. 22, pp. 1341–1343.

    Article  Google Scholar 

  44. Sergeev, V.A., Yahnin, A.G., Dmitrieva, N.P., Substorms in the polar cap: The effect of high-speed streams of the solar wind, Geomagn. Aeron., 1979, vol. 19, no. 6, pp. 1121–1122.

    Google Scholar 

  45. Troitskaya, V.A. and Kleimenova, N.G., Micropulsations and VLF-emissions during substorms, Planet. Space Sci., 1972, vol. 20, no. 9, pp. 1499–1519. https://doi.org/10.1016/0032-0633(72)90053-0

    Article  Google Scholar 

  46. Troshichev, O. and Janzhura, A., Relationship between the PC and AL indices during repetitive bay-like magnetic disturbances in the auroral zone, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, pp. 1340–1352.

    Article  Google Scholar 

  47. Troshichev, O.A., Kuznetsov, B.M., and Pudovkin, M.I., The current systems of the magnetic substorm growth and explosive phases, Planet. Space Sci., 1974, vol. 22, pp. 1403–1412.

    Article  Google Scholar 

  48. Troshichev, O.A., Podorozhkina, N.A., Sormakov, D.A., and Janzhura, A.S., PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms, J. Geophys. Res.: Space Phys., 2014, vol. 119, no. 8, pp. 6521–6540. https://doi.org/10.1002/2014JA019940

    Article  Google Scholar 

  49. Zverev, V.A., Loginov, G.A., Pudovkin, M.I., and Raspopov, O.M., The behavior of pulsations of the geomagnetic field in the period preceding polar geomagnetic disturbances, Geomagn. Issled., 1969, no. 11, pp. 37–44.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the creators of the OMNI database (http://omniweb.gsfc.nasa.gov), SuperMAG databases (https://supermag.jhuapl.edu/), IMAGE (http:// space.fmi.fi/image/) and AMPRE (https://ampere. jhuapl.edu/browse/) for their use in the work.

Funding

The work of N.G. Kleimenova and L.M. Malysheva was supported by the state task of the IPE RAS, that of L.I. Gromova and S.V. Gromov was supported by the state task of IZMIRAN, and that of I.V. Despirak and A.A. Lyubchich was supported by the state task of the PGI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. G. Kleimenova or L. I. Gromova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleimenova, N.G., Gromova, L.I., Despirak, I.B. et al. Features of Polar Substorms: An Analysis of Individual Events. Geomagn. Aeron. 63, 288–299 (2023). https://doi.org/10.1134/S0016793223600042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793223600042

Navigation