Skip to main content
Log in

Organic Matter Source Traced by n-Alkane Records Derived from Sediments of Barkol Lake in Eastern Xinjiang (NW China) and Its Response to Moisture Variability in the Past 8800 Years

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Previous multi-proxy records have revealed the advantages of well-preserved and long-scale geological archives from the lake sediments of Barkol Lake, which is located at northeast Xinjiang in northwest China. However, the exact organic matter (OM) sources in the sediments and their response to climatic variability still remain unclear in this area. In this study, we present an 8.8 kyr n-alkane record extracted from the sediments in Barkol Lake to explore the OM sources and the relationship between n-alkanes and climatic changes. The results indicate that the n-alkane composition was dominated by long-chain n-alkanes(C27–C31), implying a dominant origination of OM from the terrestrial higher plants and emergent aquatic plants. The n-alkane data further revealed that changes in OM sources were related to the surface erosion-transportation-deposition processes controlled by climatic changes. Lake level changes, which are also regulated by climate conditions, played an important role in impacting OM accumulation. Relatively wetter conditions would result in a rising lake level that favored more aquatic OM and less terrestrial OM input, and vice versa. The regional climate patterns have been generally dominated by alternations of cold-wet and warm-dry episodes over the past ~8.8 kyr. We preliminarily concluded the dynamic changes of OM input and the hydrological changes in Barkol Lake was mainly controlled by SSTs in the North Atlantic region and melting water supply modulated by Eurasian ice sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. C. B. An, Y. B. Lu, J. J. Zhao, S. C. Tao, W. M. Dong, H. Li, M. Jin, and Z. L. Wang, “A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for central Asia,” Holocene 22, 43–52 (2012).

    Article  Google Scholar 

  2. Y. Bai, X. M. Fang, Y. L. Wang, F. Kenig, Y. F. Miao, and Y. X. Wang, “Distribution of aliphatic ketones in Chinese soils: Potential environmental implications,” Org. Geochem. 37, 860–869 (2006).

    Article  Google Scholar 

  3. D. C. Barber, A. Dyke, C. Hillaire-Marcel, A. E. Jennings, J. T. Andrews, M. W. Kerwin, G. Bilodeau, R. McNeely, J. Southon, M. D. Morehead, and J. M. Gagnon, “Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes,” Nature 400, 344–348 (1999).

    Article  Google Scholar 

  4. S. V. Bellen, P. L. Dallaire, M. Garneau, and Y. Bergeron, “Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada,” Glob. Biogeochem. Cycle 25, 1–15 (2011).

    Google Scholar 

  5. A. Berger, and M. F. Loutre, “Insolation values for the climate of the last 10 million years,” Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  6. R. A. Berner, “Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time,” Glob. Planet. Change 1, 97–122 (1989).

    Article  Google Scholar 

  7. R. T. Bush, and F. A. McInerney, “Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA,” Org. Geochem. 79, 65–73 (2015).

    Article  Google Scholar 

  8. Y. R. Chen, and X. Q. Liu, “Vegetation and climate changes since the middle MIS 3 inferred from a Lake Ailike pollen record, Xinjiang, arid central Asia,” Quat. Sci. Rev. 290, 107636 (2022).

    Article  Google Scholar 

  9. F. H. Chen, Z. C. Yu, M. L. Yang, E. Ito, S. M. Wang, D. B. Madsen, X. Z. Huang, Y. Zhao, T. Sato, H. J. B. Birks, I. Boomer, J. H. Chen, C. B. An, and B. Wünnemann, “Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history,” Quat. Sci. Rev. 27, 351–364 (2008).

    Article  Google Scholar 

  10. N. Chevalier, N. Savoye, S. Dubois, M. L. Lama, V. David, P. Lecroart, K. le Ménach, and H. Budzinski, “Precise indices based on n-alkane distribution for quantifying sources of sedimentary organic matter in coastal systems,” Org. Geochem. 88, 69-77 (2015).

    Article  Google Scholar 

  11. P. A. Cranwell, G. Eglinton, and N. Robinson, “Lipids of aquatic organisms as potential contributors to lacustrine sediments,” Org. Geochem. 11, 513–527 (1987).

    Article  Google Scholar 

  12. S. Crausbay, S. Genderjahn, S. Hotchkiss, D. Sachse, A. Kahmen, and S. K. Arndt, “Vegetation dynamics at the upper reaches of a tropical montane forest are driven by disturbance over the past 7300 years,” Arct. Antarct. Alp. Res. 46, 787–799 (2014).

    Article  Google Scholar 

  13. L. L. Cui, and J. Shi, “Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China,” J. Geogr. Sci. 20, 163–176 (2010).

    Article  Google Scholar 

  14. W. E. Dean, M. A. Arthur, and G. E. Claypool, “Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal,” Mar. Geol. 70, 119–157 (1986).

    Article  Google Scholar 

  15. B. de Boer, L. J. Lourens, and R. S. W. van de Wal, “Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene,” Nat. Commun. 5, 2999 (2014).

    Article  Google Scholar 

  16. M. Derrien, L. Y. Yang, and J. Hur, “Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review,” Water Res. 112, 58–71 (2017).

    Article  Google Scholar 

  17. X. Dong, N. J. Anderson, X. Yang, X. Chen, and J. Shen, “Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration,” Glob. Change Biol. 18, 2205–2217 (2012).

    Article  Google Scholar 

  18. R. M. Doyle, F. J. Longstaffe, and K. A. Moser, “An isotope, elemental, and n-alkane baseline for organic matter sources in sediments of high-altitude lakes in the Uinta Mountains, Utah, USA,” J. Paleolimn. 69, 123–139 (2023).

    Article  Google Scholar 

  19. K. J. Ficken, D. L. Swain, G. Eglinton, and B. Li, “An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes,” Org. Geochem. 31, 745–749 (2000).

    Article  Google Scholar 

  20. W. Giger, C. Schaffner, and S. G. Wakeham, “Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee, Switzerland,” Geochim. Cosmochim. Acta 44, 119-129 (1980).

    Article  Google Scholar 

  21. J. Grimalt, J. Albaiges, H. T. A1-Saad, and A. A. Z. Douabul, “n-Alkane distributions in surface sediments from the Arabian Gulf,” Naturwissenschaften 72, 35–37 (1985).

    Article  Google Scholar 

  22. S. R. Guevara, A. Rizzo, R. Daga, N. Williams, and S. Villa, “Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies,” Quat. Res. 92, 257–271 (2019).

    Article  Google Scholar 

  23. J. Han, and M. Calvin, “Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments,” Proc. Natl. Acad. Sci. U. S. A. 64, 436-443 (1969).

    Article  Google Scholar 

  24. J. L. He, “On prehistoric inhabitants’ diet culture in Xinjiang from its archaeology discoveries,” Agr. Hist. Chin. 3, 3–10 (2007). (In Chinese).

    Google Scholar 

  25. Y. X. He, Y. W. Zheng, A. D. Pan, C. Zhao, Y. Y. Sun, M. Song, Z. Zheng, and Z. H. Liu, “Biomarker-based reconstructions of Holocene lake-level changes at Lake Gahai on the northeastern Tibetan Plateau,” Holocene 24, 405–412 (2014).

    Article  Google Scholar 

  26. B. Hoffmann, A. Kahmen, L. A. Cernusak, S. K. Arndt, and D. Sachse, “Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia,” Org. Geochem. 62, 62–67 (2013).

    Article  Google Scholar 

  27. J. Hu, P. Peng, and A. R. Chivas, “Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea,” Appl. Geochem. 24, 1666–1676 (2009).

    Article  Google Scholar 

  28. W. Huang, and W. J. Weber, “A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains,” Environ. Sci. Technol. 31, 2562–2569 (1997).

    Article  Google Scholar 

  29. J. Jacob, J. R. Disnar, M. Boussafir, A. Sifeddine, B. Turcq, and A. L. S. Albuquerque, “Major environmental changes recorded by lacustrine sedimentary organic matter since the last glacial maximum near the equator (Lagoa do Caçó, NE Brazil),” Paleogeogr. Paleoclimatol. Paleoecol. 205, 183–197 (2004).

    Article  Google Scholar 

  30. W. L. Jeng, “Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments,” Mar. Chem. 102, 242–251 (2006).

    Article  Google Scholar 

  31. M. R. Kaplan, and A. P. Wolfe, “Spatial and temporal variability of Holocene temperature in the North Atlantic region,” Quat. Res. 65, 223–231 (2006).

    Article  Google Scholar 

  32. M. C. Kennicutt II, C. Barker, J. M. Brooks, D. A. DeFreitas, and G. H. Zhu, “Selected organic matter source indicators in the Orinoco, Nile and Changjiang deltas,” Org. Geochem. 11, 41–51 (1987).

    Article  Google Scholar 

  33. J. H. Kim, D. H. Lee, S. H. Yoon, K. S. Jeong, B. Choi, and K. H. Shin, “Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific),” Chemosphere 168, 1389–1399 (2017).

    Article  Google Scholar 

  34. F. M. S. A. Kirkels, B. Jansen, and K. Kalbitz, “Consistency of plant-specific n-alkane patterns in plaggen ecosystems: A review,” Holocene 23, 1355–1368 (2013).

    Article  Google Scholar 

  35. Z. Li, Y. Gao, and L. Han, “Holocene vegetation signals in the Alashan Desert of northwest China revealed by lipid molecular proxies from calcareous root tubes,” Quat. Res. 88, 60–70 (2017).

    Article  Google Scholar 

  36. Y. Li, J. Lin, X. P. Xu, J. Z. Liu, Q. Z. Zhou, and J. H. Wang, “Multiple biomarkers for indicating changes of the organic matter source over the last decades in the Min-Zhe sediment zone, the East China Sea,” Ecol. Indic. 139, 108917 (2022).

    Article  Google Scholar 

  37. Z. Li, W. Zhang, and B. Shan, “Effects of organic matter on polycyclic aromatic hydrocarbons in riverine sediments affected by human activities,” Sci. Total Environ. 815, 152570 (2022).

    Article  Google Scholar 

  38. D. Lin, W. Zhong, Y. Lin, Y. Zhang, T. Li, and M. Quan, “Organic matter source traced by n-alkane records derived from lacustrine sediments from Daping swamp in the western Nanling Mountains (South China) and its response to climatic variability since the last deglacial,” Paleogeogr. Paleoclimatol. Paleoecol. 605, 111217 (2022).

    Article  Google Scholar 

  39. Y. Lu, C. B. An, Z. Wang, J. Zhao, H. Wei, S. Tao, W. Huang, and M. Ma, “Mid-Holocene climate change in the eastern Xinjiang region indicated by the grain size and stable isotope record from Lake Barkol, northwest China,” Environ. Earth Sci. 68, 2163–2169 (2013).

    Article  Google Scholar 

  40. Y. Lu, C. B. An, and J. Zhao, “An isotopic study on water system of Lake Barkol and its implication for Holocene climate dynamics in arid central Asia,” Environ. Earth Sci. 73, 1377-1383 (2015).

    Article  Google Scholar 

  41. G. S. Martins, R. C. Cordeiro, B. Turcq, P. A. Meyers, M. Mendez-Millan, L. S. Moreira, D. Fontes, R. A. Rodrigues, A. Sifeddine, H. Behling, and I. D. Bouloubassi, “Late quaternary hydrological changes in the southeastern amazon basin from n-alkane molecular and isotopic records in sediments of Saci lake, Pará state (Brazil),” Glob. Planet. Change 213, 103833 (2022).

    Article  Google Scholar 

  42. R. Mead, Y. Xu, J. Chong, and R. Jaffé, “Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes,” Org. Geochem. 36, 363–370 (2005).

    Article  Google Scholar 

  43. P. A. Meyers, “Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes,” Org. Geochem. 34, 261–289 (2003).

    Article  Google Scholar 

  44. P. A. Meyers, “Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes,” Org. Geochem. 27, 213–250 (1997).

    Article  Google Scholar 

  45. B. D. A. Naafs, G. N. Inglis, J. Blewett, E. L. McClymont, V. Lauretano, S. Xie, R. P. Evershed, and R. D. Pancost, “The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review,” Glob. Planet. Change 179, 57–79 (2019).

    Article  Google Scholar 

  46. J. E. Nichols, R. K. Booth, S. T. Jackson, E. G. Pendall, and Y. Huang, “Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat,” 37, 1505–1513 (2006).

  47. C. J. Nott, S. Xie, L. A. Avsejs, D. Maddy, F. M. Chambers, and R. P. Evershed, “ n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation,” Org. Geochem. 31, 231–235 (2000).

    Article  Google Scholar 

  48. A. Numaguti, “Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model,” J. Geophys. Res.-Atmos. 104, 1957–1972 (1999).

    Article  Google Scholar 

  49. A. Panait, A. Diaconu, M. Galka, R. Grindean, S. M. Hutchinson, T. Hickler, M. Lamentowicz, A. Mulch, I. Tanţău, C. Werner, and A. Feurdean, “Hydrological conditions and carbon accumulation rates reconstructed from a mountain raised bog in the Carpathians: A multi-proxy approach,” Catena 152, 57–68 (2017).

    Article  Google Scholar 

  50. K. E. Peters, C. C. Walters, and J. M. Moldowan, The Biomarker Guide (Cambridge University Press, Cambridge, 2005).

    Google Scholar 

  51. R. K. Ranjan, J. Routh, J. V. Klump, and A. L. Ramanathan, “Sediment biomarker profiles trace organic matter input in the Pichavaram mangrove complex, southeastern India,” Mar. Chem. 171, 44–57 (2015).

    Article  Google Scholar 

  52. C. E. Reimers, Y. Alleau, J. E. Bauer, J. Delaney, P. R. Girguis, P. S. Schrader, and H. A. Stecher III, “Redox effects on the microbial degradation of refractory organic matter in marine sediments,” Geochim. Cosmochim. Acta 121, 582–598 (2015).

    Article  Google Scholar 

  53. J. Saini, F. Günther, B. Aichner, S. Mischke, U. Herzschuh, C. Zhang, R. Mäusbacher, and G. Gleixner, “Climate variability in the past ~19 000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona,” Quat. Sci. Rev. 157, 129–140 (2017).

    Article  Google Scholar 

  54. D. Sun, J. Tang, Y. He, W. Liao, and Y. Sun, “Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River mouth, northeast China,” Org. Geochem. 118, 89–102 (2018).

    Article  Google Scholar 

  55. W. Sun, E. Zhang, R. Chen, and J. Shen, “Lacustrine carbon cycling since the last interglaciation in northeast China: Evidence from n-alkanes in the sediments of Lake Xingkai,” Quat. Int. 523, 101–108 (2019).

    Article  Google Scholar 

  56. S. C. Tao, C. B. An, F. H. Chen, L. Y. Tang, Z. L. Wang, Y. B. Lü, Z. F. Li, T. M. Zheng, and J. J. Zhao, “Pollen-inferred vegetation and environmental changes since 16.7 ka BP at Balikun Lake, Xinjiang,” Chin. Sci. Bull. 55, 2449–2457 (2010).

    Article  Google Scholar 

  57. G. Wang, Y. Wang, Z. Wei, W. He, X. Ma, Z. Sun, L. Xu, J. Gong, Z. Wang, and Y. Pan, “Paleoclimate changes of the past 30 cal ka BP inferred from lipid biomarkers and geochemical records from Qionghai Lake, southwest China,” J. Asian Earth Sci. 172, 346–358 (2019).

    Article  Google Scholar 

  58. Q. Wang, Y. Xie, and H. Mei, “The characteristics of compositions of the organic matter δ 13 C in lake sediments and its paleoclimatic environmental significance,” Saf. Environ. Eng. 10, 17–21 (2003).

    Google Scholar 

  59. M. Wang, Y. Yang, J. Zhang, and J. Hou, “Paleohydrological changes in the western tibetan plateau over the past 16 000 years based on sedimentary records of n-alkanes and grain size,” Acta Geol. Sin.-Engl. Ed. 94, 707–716 (2020).

    Google Scholar 

  60. R. Wang, and L. Ma, “Climate-driven C4 plant distributions in China: divergence in C4 taxa,” Sci. Rep. 6, 27977 (2016).

    Article  Google Scholar 

  61. Z. Wei, Z. Pen, J. Xue, J. Ouyang, X. Tang, and J. Cao, “Geochemistry of sediment from Barkol Lake in the westerly influenced northeast Xinjiang: Implications for catchment weathering intensity during the Holocene,” J. Asian Earth Sci. 50, 7–13 (2012).

    Article  Google Scholar 

  62. L. Xing, H. Zhang, Z. Yuan, Y. Sun, and M. Zhao, “Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf,” Cont. Shelf Res. 31, 1106–1115 (2011).

    Article  Google Scholar 

  63. J. B. Xue, and W. Zhong, “Holocene climate variation denoted by Barkol Lake sediments in northeastern Xinjiang and its possible linkage to the high and low latitude climates,” Sci. China-Earth Sci. 54, 603–614 (2011).

    Article  Google Scholar 

  64. J. B. Xue, W. Zhong, Y. J. Zhao, and X. Y. Peng, “Holocene climatic instability recorded by a lake sediment section in northeast Xinjiang, China,” J. Desert. Res. 28, 648–656 (2008). (In Chinese).

    Google Scholar 

  65. J. B. Xue, W. Zhong, Y. Zhao, and X. Peng, “Holocene abrupt climate shifts and mid-Holocene drought intervals recorded in Barkol Lake of northern Xinjiang of China,” Chin. Geogr. Sci. 18, 54–61 (2008).

    Article  Google Scholar 

  66. S. Yamamoto, K. Kawamura, O. Seki, P. A. Meyers, Y. Zheng, and W. Zhou, “Environmental influences over the last 16 ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China,” Chem. Geol. 277, 261–268 (2010).

    Article  Google Scholar 

  67. M. Zech, T. Krause, S. Meszner, and D. Faust, “Incorrect when uncorrected: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences—A case study from the Saxonian loess region, Germany,” Quat. Int. 296, 108–116 (2013).

    Article  Google Scholar 

  68. J. Zhao, C. An, Y. Zhao, and W. Dong, “Holocene C3/C4 vegetation variations in arid Central Asia: Implications for paleoclimate,” Paleogeogr. Paleoclimatol. Paleoecol. 592, 110905 (2022).

    Article  Google Scholar 

  69. A. Zhang, and C. Wang, “On the evolution of the administration systems of ‘station troops to open up watesteland’ of the successive dynasties in Xinjinag and its factors,” J. Xinjiang Univ. 37, 77–82 (2009). (In Chinese).

    Google Scholar 

  70. C. Zhang, C. Zhao, A. Zhou, K. Zhang, R. Wang, and J. Shen, “Late Holocene lacustrine environmental and ecological changes caused by anthropogenic activities in the Chinese Loess Plateau,” Quat. Sci. Rev. 203, 266–277 (2019).

    Article  Google Scholar 

  71. Q. C. Zhang, X. E. Chang, and G. R. Liu, “Stable isotopic analysis on human bones from Heigouliang cemetery in Barkol, Xinjiang,” West. Reg. Stud. 3, 45–49 (2009). (In Chinese).

  72. Y. Zhang, P. A. Meyers, X. Liu, G. Wang, X. Ma, X. Li, Y. Yuan, and B. Wen, “Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China,” Quat. Sci. Rev. 152, 19–30 (2016).

    Article  Google Scholar 

  73. Y. Zhang, Y. Su, Z. Liu, K. Sun, L. Kong, J. Yu, and M. Jin, “Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu basin, Eastern China,” Sci. Total Environ. 613, 907–918 (2018).

    Article  Google Scholar 

  74. Y. Zhang, Y. Su, Z. Liu, L. Kong, J. Yu, and M. Jin, “Aliphatic hydrocarbon biomarkers as indicators of organic matter source and composition in surface sediments from shallow lakes along the lower Yangtze River, Eastern China,” Org. Geochem. 122, 29–40 (2018).

    Article  Google Scholar 

  75. Y. Zhang, J. Yu, Y. Su, Y. Du, and Z. Liu, “A comparison of n-alkane contents in sediments of five lakes from contrasting environments,” Org. Geochem. 139, 103943 (2020).

    Article  Google Scholar 

  76. Y. Zhang, C. Gao, S. Zhang, P. Yang, P. A. Meyers, and G. Wang, “Significance of different n-alkane biomarker distributions in four same-age peat sequences around the edges of a small maar lake in China,” Sci. Total Environ. 826, 154137 (2022).

    Article  Google Scholar 

  77. Y. Zhang, H. Fu, J. Yu, Y. Su, and Z. Liu, “Geochemical characteristics of n-alkanes in sediments from oligotrophic and eutrophic phases of five lakes and potential use as paleoenvironmental proxies,” Catena 220, 106682 (2023).

    Article  Google Scholar 

  78. Y. H. Zheng, W. J. Zhou, P. A. Meyers, and S. C. Xie, “Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China,” Org. Geochem. 38, 1927–1940 (2007).

    Article  Google Scholar 

  79. W. Zhong, J. Xue, X. Li, H. Xu, and J. Ouyang, “A Holocene climatic record denoted by geochemical indicators from Barkol Lake in the northeastern Xinjiang, NW China,” Geochem. Int. 48, 792–800 (2010).

    Article  Google Scholar 

  80. W. Zhong, J. Y. Cao, J. B. Xue, and J. Ouyang, “A 15,400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China,” Quat. Res. 84, 246–254 (2015).

    Article  Google Scholar 

  81. W. J. Zhou, S. C. Xie, P. A. Meyers, and Y. H. Zheng, “Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence,” Org. Geochem. 36, 1272–1284 (2005).

    Article  Google Scholar 

  82. Y. T. Zhao, C. B. An, L. M. Mao, J. J. Zhao, L. Y. Tang, A. F. Zhou, H. Li, W. M. Dong, F. T. Duan, and F. H. Chen, “Vegetation and climate history in arid western China during MIS2: New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan,” Quat. Sci. Rev. 126, 112–125 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Yongdong Zhang, Durui Lin for their help in laboratory measurements and valuable suggestions during the writing of the manuscript. We also sincerely appreciate two anonymous reviewers and Dr M.Yu for their constructive comments and suggestions. We thank Associated Editor M.Yu.Spasennykh for his help in processing the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 41971101, 41571187, and 41071137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Wang or Wei Zhong.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi Wang, Zhong, W., Wang, X. et al. Organic Matter Source Traced by n-Alkane Records Derived from Sediments of Barkol Lake in Eastern Xinjiang (NW China) and Its Response to Moisture Variability in the Past 8800 Years. Geochem. Int. (2024). https://doi.org/10.1134/S0016702924030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0016702924030091

Keywords:

Navigation