Skip to main content
Log in

Experimental Study of the \({\text{Mo}}{{{\text{O}}}_{{\text{2}}}}{\text{Cl}}_{{2\left( {{\text{aq}}} \right)}}^{^\circ }\) Stability in Hydrothermal Solutions at 100–350°C and Saturated Vapor Pressure

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The solubility of crystalline MoO3 in HCl solutions with variable concentration was investigated at 100, 155, 200, 250, 300, 350°C and saturated vapor pressure. The results showed that the MoO3 solubility increases with increasing HCl concentration. Using the OptimA program, the Gibbs energies of MoO2Cl2 complex have been determined. The stability constants of MoO2Cl2 are calculated according to the reaction:

$${\text{Mo}}{{{\text{O}}}_{{{\text{3(c)}}}}} + 2{\text{HC}}{{{\text{l}}}_{{{\text{(aq)}}}}} \to {\text{Mo}}{{{\text{O}}}_{{\text{2}}}}{\text{Cl}}_{{2{\text{(aq)}}}}^{^\circ } + {{{\text{H}}}_{{\text{2}}}}{{{\text{O}}}_{{{\text{(l)}}}}}.$$

The pK values are 1.07 ± 0.29; 1.06 ± 0.49; 1.74 ± 0.71; 1.83 ± 0.47; 1.50 ± 0.28; 0.95 ± 0.57, respectively, at 100, 155, 200, 250, 300, 350°C (saturated vapor pressure).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. N. N. Akinfiev and L. W. Diamond, “Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters,” Geochim. Cosmochim. Acta 67 (4), 613–627 (2003).

    Article  CAS  Google Scholar 

  2. S. Borg, W. Liu, B. Etschmann, Y. Tian, and J. Brugger, “An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar,” Geochim. Cosmochim. Acta 92, 292–307 (2012).

    Article  CAS  Google Scholar 

  3. M. V. Borisov and Yu. V. Shvarov, Thermodynamics of Geochemical Processes (MSU, Moscow, 1992) [in Russian].

    Google Scholar 

  4. F. Crea, C. Stefano, A. Irto, D. Milea, A. Pettignano, and S. Sammartano, “Modeling the acid–base properties of molybdate (VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations,” J. Mol. Liq. 229, 15–26 (2017).

    Article  CAS  Google Scholar 

  5. T. P. Dadze, G. A. Kashirtseva, M. P. Novikov, and A. V. Plyasunov, “Solubility of MoO3 in acid solutions and vapor-liquid distribution of molybdic acid,” Fluid Phase Equilib. 440, 64–76 (2017).

    Article  CAS  Google Scholar 

  6. T. P. Dadze, G. A. Kashirtseva, M. P. Novikov, and A. V. Plyasunov, “Solubility of calcium molybdate in aqueous solutions at 573 K and thermodynamics of monomer hydrolysis of Mo(VI) at elevated temperatures,” Monatsh. Chem. 149, 261–282 (2018).

    Article  CAS  Google Scholar 

  7. T. P. Dadze, G. A. Kashirtseva, M. P. Novikov, and A. V. Plyasunov, “Solubility of MoO3 in aqueous acid chloride-bearing solutions at 573 K,” J. Chem. Eng. Data 63, 1827–1832 (2018).

    Article  CAS  Google Scholar 

  8. I. A. Dement’ev, A. O. Kozin, Yu. V. Kondrat’ev, V. D. Korol’kov, and A. A. Proyavkin, “Mononuclear, polynuclear, and cluster complexes of molybdenum and their reactions as models of biochemical systems and processes,” Russ. J. General Chem. 77 (5), 822–843 (2007).

    Article  Google Scholar 

  9. H. Gamsjäger and M. Morishita, “Thermodynamic properties of molybdate ion: reaction cycles and experiments,” Pure Appl. Chem. 87 (5), 461–476 (2015).

    Article  Google Scholar 

  10. J. Guo, P. Zavalij, and M. S Whittingham, “Metastable hexagonal molybdates: hydrothermal preparation, structure, and reactivity,” J. Solid State Chem. 117 (2), 323–332 (1995).

    Article  CAS  Google Scholar 

  11. H. C. Helgeson, “Thermodynamics of hydrothermal systems at elevated temperatures and pressures,” Am. J. Sci. 267 (7), 729–804 (1969).

    Article  CAS  Google Scholar 

  12. Z. G. Karpov and M. V. Mokhosoev, Solubility and Properties of Molybdenum and Tungsten. A Reference Book (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  13. A. V. Kudrin, “Experimental study of solubility of tugarinovite MoO2 in aqueous solutions at elevated temperatures,” Geokhimiya, No. 6, 870–883 (1985).

    Google Scholar 

  14. A. V. Kudrin, “Behavior of molybdenum in aqueous sodium and potassium chloride solutions at temperatures of 300–450°C,” Geokhimiya, No. 1, 99–112 (1989).

    Google Scholar 

  15. Yu. Yu. Lur’e, Analytical Chemistry of Industrial Waste Waters (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  16. Z. Minubayeva and T. M. Seward, “Molybdic acid ionisation under hydrothermal conditions to 300°C,” Geochim. Cosmochim. Acta 74, 4365–4374 (2010).

    Article  CAS  Google Scholar 

  17. B. T. Pokalov, Genetic Types and Prospecting Criteria for Endogenous Molybdenum Deposits (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  18. V. I. Rekharskii, Geochemistry of Molybdenum in Endogenous Processes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  19. K. U. Rempel, A. A. Migdisov, and A. E. Williams–Jones, “The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis,” Geochim. Cosmochim. Acta 70, 687–696 (2006).

    Article  CAS  Google Scholar 

  20. Y. Sasaki, I. Lindqvist, and L. G. Sillen, “On the first equilibrium steps in the acidification of the molybdate ion,” J. Inorg. Nuc. Chem. 9, 93–100 (1959).

    Article  CAS  Google Scholar 

  21. A. V. Suvorov, G. I. Novikov, R. B. Dobrotin, and A. V. Tarasov, “Thermodynamic oxychlorides of molybdenum and tungsten,” Chemistry of Trace Elements (Leningrad. Gos. Univ., Leningrad, 1964), pp. 26–32.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Scientific Editor, M.V. Mironenko, and reviewers for valuable comments and suggestions that significantly improved the manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Yakimenko or A. Yu. Bychkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimenko, A.A., Bychkov, A.Y. Experimental Study of the \({\text{Mo}}{{{\text{O}}}_{{\text{2}}}}{\text{Cl}}_{{2\left( {{\text{aq}}} \right)}}^{^\circ }\) Stability in Hydrothermal Solutions at 100–350°C and Saturated Vapor Pressure. Geochem. Int. 62, 267–273 (2024). https://doi.org/10.1134/S0016702924030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030066

Keywords:

Navigation