Skip to main content
Log in

A Stepwise Dissolution Method Applied to Isotopic Chemostratigraphic and Geochronological Studies of Riphean Carbonate Rocks of the Baykit Uplift

  • Published:
Geochemistry International Aims and scope Submit manuscript

An Erratum to this article was published on 15 November 2023

This article has been updated

Abstract

The potential of the stepwise dissolution analytical procedure to obtain chemostratigraphic and geochronological information is demonstrated by a case study of Riphean carbonate rocks of the Kamo Group of the Baykit Uplift (Eastern Siberia). The procedures suggested for studying Rb–Sr and U–Pb systems in carbonate rocks included (1) selection of samples with the lowest 87Sr/86Sr ratio on the basis of preliminary Rb–Sr analysis of the collection using the routine procedure of bulk leaching in 0.1N CH3COOH; (2) detailed study of the Rb–Sr systematics in selected samples using two-step dissolution in 0.2N CH3COOH and separation of L(Rb–Sr)1 and L(Rb–Sr)2 fractions; (3) analysis of Pb isotope composition of the selected samples to derive the preliminary value of their age; (4) detailed study of U–Pb systematics of carbonate rocks using the stepwise dissolution in 0.5N HBr, resulting in six dissolved fractions L(U–Pb)1–L(U–Pb)6 for each of the selected samples; and (5) a final calculation of the Pb–Pb age of the studied rocks, based on the results from the obtained fractions, with the exclusion from the calculation of the initial fractions of this dissolution containing epigenetically altered carbonate material. The values of the initial 87Sr/86Sr ratio in L(Rb–Sr)2 fractions of carbonate rocks of the Kamo Group are as follows: limestone of the Madra Formation, 0.70490; dolostones of the Jurubchen Formation, 0.70495–0.70503; and dolostones of the Kuyumba and Vingolda formations, 0.70580 and 0.70521, respectively. These values characterizing the least altered carbonate material correspond to 87Sr/86Sr ratios in the Early Riphean ocean and can be used for chemostratigraphic calculations. Taking into account the Rb–Sr data, the U–Pb age of the Jurubchen Formation carbonate rocks dissolved in six steps was calculated, starting from L(U–Pb)3. The slope of the resulting isochron in the coordinates 206Pb/204Pb–207Pb/204Pb corresponds to 1501 ± 23 Ma, which supports the conclusion that the carbonate rocks of the lower part of the Kamo Group of the Baykit Uplift were formed in the Early Riphean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

REFERENCES

  1. M. Babinski, F. Chemale, Jr., and W. R. Van Schmus, “The Pb/Pb age of the Minas Supergroup carbonate rocks, Quadrilatero Ferrifero, Brazil,” Precambrian Res. 72 (3–4), 235–245 (1995).

    Article  Google Scholar 

  2. M. Babinski, W. R. Van Schmus, and F. Chemale, Jr., “Pb–Pb dating and Pb isotope geochemistry of Neoproterozoic carbonate rocks from the São Francisco basin, Brazil: implications for the mobility of Pb isotopes during tectonism and metamorphism,” Chem. Geol. 160 (3), 175–199 (1999).

    Article  Google Scholar 

  3. M. Babinski, L. C. Vieira, and R. I. F. Trindade, “Direct dating of the Sete Lagoas cap carbonate (Bambuì Group, Brazil) and implications for the Neoproterozoic glacial events,” Terra Nova. 19 (6), 401–406 (2007).

    Article  Google Scholar 

  4. L. N. Bagrintseva, N. B. Krasilnikova, and R. S. Sautkin, “Conditions of formation and properties of the Riphean carbonate reservoirs of the Yurubcheno–Tokhomsk deposit,” Geol. Nefti Gaza, No. 1, 24–40 (2015).

    Google Scholar 

  5. T. R. Bailey, J. M. McArthur, H. Prince, and M. F. Thirwall, “Dissolution methods for strontium isotope stratigraphy: wholerock analysis,” Chem. Geol. 167 (3–4), 313–319 (2000).

    Article  Google Scholar 

  6. T. K. Bazhenova, A. I. Shapiro, V. F. Vasileva, N. B. Vishnevskaya, L. I. Klimova, N. T. Kunaeva, G. V. Turenkova, S. A. Bogoslovskii, and N. A. Rogozina, “Scales of Petroleum generation and accumulation in the southwestern Siberian Platform,” Razved. Okhr. Nedr, No. 10, 12–17 (2014).

    Google Scholar 

  7. E. J. Bellefroid, N. J. Planavsky, N. R. Miller, U. Brand, and C. Wang, “Case studies on the utility of sequential carbonate leaching for radiogenic strontium isotope analysis,” Chem. Geol. 497, 88–99 (2018).

    Article  Google Scholar 

  8. L. N. Boldushevskaya, N. B. Krasilnikova, G. Yu. Rudaya, S. V. Fadeeva, V. V. Samoilenko, P. V. Trushkov, V. A. Galiaskarov, and S. V. Naumov, “Carbonaceous unit in the section of the Upper Riphean Iremken sequence of the Baikit anteclilse,” in Stratigraphy of the Upper Precambrian: Problems and Ways of Solution. Proc. 7 th Russian Conference on Problems of Precambrian Geology, St-Petersburg, 2021 (Svoe izdatelstvo, St. Petersburg, 2021), pp. 25–27 [in Russian].

  9. R. Bolhar, A. Hofmann, J. Woodhead, J. Hergt, and P. Dirks, “Pb-and Nd-isotope systematics of stromatolitic limestones from the 2.7 Ga Ngezi Group of the Belingwe Greenstone Belt: constraints on timing of deposition and provenance,” Precambrian Res. 114 (3–4), 277–294 (2002).

    Article  Google Scholar 

  10. S. Chaudhuri and N. Clauer, “Strontium isotope compositions and potassium and rubidium contents of formation waters in sedimentary basins: clues to the origin of the solutes,” Geochim. Cosmochim. Acta 57 (3), 429–437 (1993).

    Article  Google Scholar 

  11. X. Chen, Y. Zhou, and G. A. Shields, “Progress towards an improved Precambrian seawater 87Sr/86Sr curve,” Earth–Sci. Rev. 224, 103869 (2022).

    Article  Google Scholar 

  12. J. I. Drever, The Geochemistry of Natural Water (Prentice Hall, Cambridge, 1982).

    Google Scholar 

  13. R. Frei, I. M. Villa, Th. F. Nagler, J. D. Kramers, V. J. Przybylowicz, V. M. Prozesky, B. A. Hoffman, and B. S. Kamber, “Single mineral dating by the Pb-Pb step-leaching method: assessing the mechanisms,” Geochim. Cosmochim. Acta 61 (2), 393–414 (1997).

    Article  Google Scholar 

  14. I. M. Gorokhov, M. A. Semikhatov, A. V. Baskakov, E. P. Kutyavin, N. N. Mel’nikov, A. V. Sochava, and T. L. Turchenko, “Strontium isotope composition in the Riphean, Vendian, and Lower Cambrian carbonate rocks,” Stratigraf. Geol. Korrelyatsiya 3 (1), 3–33 (1995).

    Google Scholar 

  15. I. M. Gorokhov, “Diagenesis of carbonate sediments: geochemistry of trace elements and strontium isotopes,” Lithology and Paleogeography (Sankt-Peterburgskogo Universiteta, St. Petersburg, 1996), Vol. 4, 141–164 (1996).

  16. I. M. Gorokhov, A. B. Kuznetsov, G. V. Konstantinova, G. V. Lipenkov, E. O. Dubinina, and I. V. Bigun, “Carbonate rocks from the Riphean–Vendian boundary deposits of the Anabar uplift: isotope (87Sr/86Sr, δ13C, δ18O) systematics and chemostratigraphic consequences,” Dokl. Earth Sci. 482 (2), 1306–1310 (2018).

    Article  Google Scholar 

  17. I. M. Gorokhov, A. B. Kuznetsov, M. A. Semikhatov, I. M. Vasil’eva, N. G. Rizvanova, G. V. Lipenkov, and E. O. Dubinina, “Early Riphean Billyakh Group of the Anabar Uplift, North Siberia: C–O isotopic geochemistry and Pb–Pb age of dolomites,” Stratigraphy. Geol. Correlation 27 (5), 514–528 (2019).

    Article  Google Scholar 

  18. I. M. Gorokhov, A. B. Kuznetsov, I. M. Vasil’eva, A. Yu. Kramchaninov, N. G. Rizvanova, and G. V. Konstantinova, “Pb–Pb age of carbonate rocks of the Kamo Group, Baikit Anteclise of the Siberian Platform,” Dokl. Earth Sci. 500 (1), 715–719 (2021).

    Article  Google Scholar 

  19. I. M. Gorokhov, A. B. Kuznetsov, I. M. Vasil’eva, G. V. Konstantinova, E. O. Dubinina, G. V. Lipenkov, and N. G. Rizvanova, “Sr and Pb isotopic compositions in dolostones of the Lower Riphean Billyakh Group, Anabar Uplift: step-leaching technique in chemostratigraphy and geochronology,” Stratigraphy. Geol. Correlation 30 (4), 201–227 (2022).

    Article  Google Scholar 

  20. O. V. Gutina, “Draft of regional stratigraphic scheme of the Riphean deposits of the southwestern Siberian Paltform (within the Krasnoyarsk krai),” Stratigraphy of Upper Precambrian: Probems and Ways of Solution. Proc. 7 th Russian Conf. on Problems of Precambrian Geology, St. Petersburg, 2021, (Svoe izdatelstvo, St. Petersburg, 2021), pp. 50–52 [in Russian].

  21. G. P. Halverson, F. O. Dudas, A. C. Maloof, and S. A. Bowring, “Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater,” Palaeogeograph., Palaeoclimatol., Palaeoecol. 256 (3–4), 103–129 (2007).

    Article  Google Scholar 

  22. B.-M. Jahn, J. Bertrand-Sarfati, N. Morin, and J. Mace, “Direct dating of stromatolitic carbonates from the Schmidtsdrif Formation (Transvaal Dolomite), South Africa, with implications on the age of the Ventersdorp Supergroup,” Geology 18 (12), 1211–1214 (1990).

    Article  Google Scholar 

  23. B.-M. Jahn and Cuvellier. H., “Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment,” Chem. Geology (Isot. Geosci. Sect.), 115 (1–2), 125–151 (1994).

    Google Scholar 

  24. A. J. Kaufman, S. B. Jacobsen, and A. H. Knoll, “The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate,” Earth Planet. Sci. Lett. 120 (3–4), 409–430 (1993).

    Article  Google Scholar 

  25. O. K. Kaurova, G. V. Ovchinnikova, and I. M. Gorokhov, “U–Th–Pb systematics of Precambrian carbonate rocks: dating of the formation and transformation of carbonate sediments,” Stratigraphy. Geol. Correlation 18 (3), 252–268 (2010).

    Article  Google Scholar 

  26. E. M. Khabarov, I. P. Morozova, V. A. Ponomarchuk, A. N. Travin, and A. Yu. Nekhaev, “The correlation and age of petroliferous Riphean deposits in the Baikit Anteclise, Siberian Platform: evidence from isotopic geochemical data,” Dokl. Earth Sci. 358 (1), 55–57 (1998).

    Google Scholar 

  27. E. M. Khabarov, V. A. Ponomarchuk, I. P. Morozova, and A. N. Travin, “Carbon isotopes in Riphean carbonates from the Yenisei Ridge,” Stratigraphy. Geol. Correlation 7 (6), 537–556 (1999).

    Google Scholar 

  28. E. M. Khabarov, V. A. Ponomarchuk, and I. P. Morozova, “Strontium isotopic evidence for supercontinental breakup and formation in the Riphean: western margin of the Siberian craton,” Russ. J. Earth Sci. 4 (4), 259–269 (2002).

    Article  Google Scholar 

  29. E. M. Khabarov, V. A. Ponomarchuk, I. P. Morozova, I. V. Varaksina, and S. V. Saraev, “Fluctuations of eh sea level and carbon isotope composition of carbonates in a Riphean petroliferous basin on the western margin of the Siberian Craton (Baikit uplift),” Russ. Geol. Geophys. 43 (3), 211–239 (2002).

    Google Scholar 

  30. E. M. Khabarov and I. V. Varaksina, “The structure and depositional environments of Mesoproterozoic petroliferous carbonate complexes in the western Siberian Craton,” Russ. Geol. Geophys. 52 (8), 923–944 (2011).

    Article  Google Scholar 

  31. V. V. Kharakhinov and S. I. Shlenkin, Petroleum Potential of Precambrian Sequences of East Siberia: Evidence from the Kuyumba-Yurubchen–Tokhomsk Area of Petroleum Accumulation (Nauchnyi mir, Moscow, 2011) [in Russian].

  32. V. V. Khomentovskii and K. E. Nagovitsin, “Neoproterozoic of the western Siberian Platform,” Geol. Geofiz. 39 (10), 1365–1376 (1998).

    Google Scholar 

  33. A. H. Knoll, A. J. Kaufman, and M. A. Semikhatov, “The carbon-isotopic composition of Proterozoic carbonates: Riphean succession from Northwestern Siberia (Anabar massif, Turukhansk uplift). Amer. J. Sci. 295(7), 823–850 (1995).

    Article  Google Scholar 

  34. A. E. Kontorovich, A. N. Izosimova, A. A. Kontorovich, E. M. Khabarov, and I. D. Timoshina, “Geological structure and conditions of formation of the giant Yurubchen-Tokhomsk zone of petroleum accumulation in the Upper Proterozoic of the Siberian Paltform,” Geol. Geofiz. 37 (8), 166–195 (1996).

    Google Scholar 

  35. B. G. Kraevskii and A. M. Pustylnikov, “Sedimentation model of Riphean deposits of the Yurubchen-Takhomsk zone as basis for correlation,” Results of Works on the “Poisk” Program for 1992–1993 (SNIIGGiMS, Novosibirsk, 1995), pp. 87–90 [in Russian].

  36. B. G. Kraevskii, A. M. Pustylnikov, V. A. Krinin, M. K. Kraevskaya, and E. A. Ledneva, “New data on the stratigraphy of the Riphean sediments of the Baikit anteclise,” Geol. Geofiz., No. 6, 103–110 (1991).

  37. B. G. Kraevskii, M. S. Yakshin, and K. E. Nagovitsin, “Regional stratigraphic scheme of Riphean deposits of the western Siberian Platform,” Geol. Mineral.-Syr’ev. Resursy Sibiri, No. 5, 4–14 (2018).

    Google Scholar 

  38. B. B. Krentsler and I. G. Levchenko, “Riphean deposits of the Baikit anteclise in the Katanga saddle,” Regional Stratigraphy of Petroleum Provinces of Siberia (SNIIGGiMS, Novosibirsk, 1985), pp. 42–49 [in Russian].

  39. J. A. Kupecz and L. S. Land, “Late-stage dolomitization of the Lower Ordovician Ellenburger Group, West Texas. J. Sediment. Petrol. 61(4), 551–574 (1991).

    Google Scholar 

  40. A. B. Kuznetsov, I. M. Gorokhov, M. A. Semikhatov, N. N. Mel’nikov, and V. I. Kozlov, “Strontium isotopic composition in the limestones of the Inzer Formation, Upper Riphean type section, Southern Urals,” Dokl. Earth Sci. 353 (2), 319–324 (1997).

    Google Scholar 

  41. A. B. Kuznetsov, G. V. Ovchinnikova, I. M. Gorokhov, O. K. Kaurova, M. T. Krupenin, and A. V. Maslov, “Sr-isotope signature and Pb–Pb age of the Bakal Formation limestones in the Lower Riphean type section, the Southern Urals,” Dokl. Earth Sci. 391A (6), 819–822 (2003).

    Google Scholar 

  42. A. B. Kuznetsov, G. V. Ovchinnikova, M. T. Krupenin, I. M. Gorokhov, A. V. Maslov, O. K. Kaurova, and R. Ellmies, “Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotopic characteristics and Pb–Pb age,” Lithol. Mineral. Resour. 40 (3), 195–215 (2005).

    Article  Google Scholar 

  43. A. B. Kuznetsov, G. V. Ovchinnikova, M. A. Semikhatov, I. M. Gorokhov, O. K. Kaurova, M. T. Krupenin, I. M. Vasil’eva, B. M. Gorokhovskii, and A. V. Maslov, “The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals,” Stratigraphy. Geol. Correlation 16 (2), 120–137 (2008).

    Article  Google Scholar 

  44. A. B. Kuznetsov, V. A. Melezhik, I. M. Gorokhov, N. N. Melnikov, G. V. Konstantinova, E. P. Kutyavin, and T. L. Turchenko, “Sr isotopic composition of Paleoproterozoic 13C-rich carbonate rocks: the Tulomozero Formation, SE Fennoscandian Shield,” Precambrian Res. 182 (4), 300–312 (2010).

    Article  Google Scholar 

  45. A. B. Kuznetsov, G. V. Ovchinnikova, I. M. Gorokhov, E. F. Letnikova, O. K. Kaurova, and G. V. Konstantinova, “Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb-Pb dating of carbonates from the Baikal type section, southeastern Siberia,” J. Asian Earth Sci. 62, 51–66 (2013).

    Article  Google Scholar 

  46. A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, “The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian),” Stratigraphy. Geol. Correlation 22 (6), 553–575 (2014).

    Article  Google Scholar 

  47. A. B. Kuznetsov, B. B. Kochnev, I. M. Vasil’eva, and G. V. Ovchinnikova, “The Upper Riphean of the Yenisei Range: Sr chemostratigraphy and Pb–Pb age of limestones of the Tungusik and Shirokaya groups,” Stratigraphy. Geol. Correlation 27 (5), 538–554 (2019).

    Article  Google Scholar 

  48. D. Li, G. A. Shields-Zhou, H. -F. Ling, and M. Thirlwall, “Dissolution methods for strontium isotope stratigraphy: guidelines for the use of bulk carbonate and phosphorite rocks,” Chem. Geol. 290 (3–4), 133–144 (2011).

    Article  Google Scholar 

  49. C. Liu, Z. Wang, and T. D. Raub, “Geochemical constraints on the origin of Marinoan cap dolostones from Nuccaleena Formation, South Australia,” Chem. Geol. 351, 95–104 (2013).

    Article  Google Scholar 

  50. K. R. Ludwig, “User’s manual for Isoplot/Ex, version 3.00, a geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ., No. 4, (2003).

  51. G. Manhes, J. E. Minster, and C. J. Allegre, “Comparative uranium-thorium-lead and rubidium-strontium study of the Severin amphoterite: consequences for Early Solar System chronology,” Earth Planet. Sci. Lett. 39 (1), 14–24 (1978).

    Article  Google Scholar 

  52. J. M. McArthur, “Recent trends in strontium isotope stratigraphy,” Terra Nova 6 (4), 331–358 (1994).

    Article  Google Scholar 

  53. J. M. McArthur, M. F. Thirlwall, AS. Gale, WJ. Kennedy, J. A. Burnett, D. Mattey, and A. R. Lord, “Strontium isotope stratigraphy for the Late Cretaceous: a new curve, based on the English Chalk,” In: High Resolution Stratigraphy, Ed. by E. Hailwd and R. Kid, Geol. Soc. London, Spec. Publ. 70, 195–209 (1993).

  54. N. N. Mel’nikov, “Efficiency of the double spiking technique in Pb mass spectrometric analysis for geochronology,” Geochem. Int. 48(8), 825–834 (2010).

    Article  Google Scholar 

  55. V. A. Melezhik, P. M. Ihlen, A. B. Kuznetsov, S. Gjelle, A. Solli, I. M. Gorokhov, A. E. Fallick, J. S. Sandstad, and T. Bjerkgård, “Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the Uppermost Allochthon of the Norwegian Caledonides: a chemostratigraphic approach,” Precambrian Res. 261, 272–299 (2015).

    Article  Google Scholar 

  56. N. V. Mel’nikov, M. S. Yakshin, B. B. Shishkin, A. O. Efimov, G. A. Karlova, L. I. Kilina, L. N. Konstantinova, B. B. Kochnev, B. G. Kraevskii, P. N. Melnikov, K. E. Nagovitsin, A. A. Postnikov, L. V. Ryabkova, A. A. Terleev, and E. M. Khabarov, Stratigraphy of Petroleum-Bearing Basins of Siberia. Riphean and Vendian of the Siberian Platform and its Folded Framing (Geo, Novosibirsk, 2005) [in Russian].

  57. I. P. Montañez, J. L. Banner, D. A. Osleger, L. E. Borg, and P. J. Bosserman, “Integrated Sr isotope variation and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr,” Geology 24 (10), 917–920 (1996).

    Article  Google Scholar 

  58. S. Moorbath, P. N. Taylor, J. L. Orpen, P. Treloar, and J. F. Wilson, “First direct radiometric dating of Archaean stromatolitic limestone,” Nature 326 (6116), 865–867 (1987).

    Article  Google Scholar 

  59. K. Nagovitsin, “Tappania-bearing association of the Siberian platform: Biodiversity, stratigraphic position and geochronological constraints,” Precambrian Res. 173 (1–4), 137–145 (2009).

    Article  Google Scholar 

  60. K. E. Nagovitsin, A. M. Stanevich, and T. A. Kornilova, “Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia,” Russ. Geol. Geophys. 51 (11), 1192–1198 (2010).

    Article  Google Scholar 

  61. Petroleum Basins and Regions of Siberia, Ed. by A. E. Kontorovicha (SNIIGGiMS, Novosibirsk, 1994), Vol. 6 [in Russian].

  62. S. Ohde and H. Elderfield, “Strontium isotope stratigraphy of Kita-Daito-Iima Atoll, North Phillipines Sea: implications for Neogene sea level change and tectonic history,” Earth Planet. Sci. Lett. 113, 473–486 (1992).

    Article  Google Scholar 

  63. G. V. Ovchinnikova, M. A. Semikhatov, I. M. Gorokhov, B. V. Belyatskii, I. M. Vasileva, and L. K. Levskii, “U‑Pb systematics of Precambrian carbonates: Riphean Sukhaya Tunguska Formation of the Turukhansk Uplift of Siberia,” Litol. Polezn. Iskop., No. 5, 525–536 (1995).

  64. G. V. Ovchinnikova, I. M. Vasileva, M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, B. M. Gorokhovskii, and L. K. Levskii, “U-Pb systematics on Proterozoic carbonate rocks: the Inzer Formation of the Upper Riphean Stratotype (Southern Urals),” Stratigraphy. Geol. Correlation 6 (4), 336–347 (1998).

    Google Scholar 

  65. G. V. Ovchinnikova, I. M. Vasileva, M. A. Semikhatov, I. M. Gorokhov, A. B. Kuznetsov, B. M. Gorokhovskii, and L. K. Levskii, “The Pb–Pb trail dating of carbonates with open U–Pb systems: the Min’yar Formation of the Upper Riphean stratotype, Southern Urals,” Stratigraphy. Geol. Correlation 8 (6), 529–543 (2000).

    Google Scholar 

  66. G. V. Ovchinnikova, M. A. Semikhatov, I. M. Vasileva, I. M. Gorokhov, O. K. Kaurova, V. N. Podkovyrov, and B. M. Gorokhovskii, “Pb–Pb age of limestones of the Middle Riphean Malgina Formation, the Uchur–Maya region of East Siberia,” Stratigraphy. Geol. Correlation 9 (6), 527–539 (2001).

    Google Scholar 

  67. G. V. Ovchinnikova, A. B. Kuznetsov, V. A. Melezhik, I. M. Gorokhov, I. M. Vasil’eva, and B. M. Gorokhovskii, “Pb–Pb Age of Jatulian carbonate rocks: The Tulomozero Formation of southeast Karelia,” Stratigraphy. Geol. Correlation 15 (4), 359–372 (2007).

    Article  Google Scholar 

  68. G. V Ovchinnikova, A. B. Kuznetsov, I. M. Vasileva, I. M. Gorokhov, M. T. Krupenin, and T. L. Turchenko, “Pb–Pb age of sedimentary phosphorite reworking in Lower Riphean carbonate sediments, the Satka Formation of Southern Urals,” Stratigraphy. Geol. Correlation 16 (2), 138–142 (2008).

    Article  Google Scholar 

  69. G. V. Ovchinnikova, A. B. Kuznetsov, I. M. Vasileva, I. M. Gorokhov, E. F. Letnikova, and B. M. Gorokhovskii, “U–Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River Basin, Western Mongolia,” Stratigraphy. Geol. Correlation 20 (6), 516–527 (2012).

    Article  Google Scholar 

  70. G. V. Ovchinnikova, A. B. Kuznetsov, I. M. Vasileva, I. M. Gorokhov, M. T. Krupenin, B. M. Gorokhovskii, and A. V. Maslov, “Pb–Pb age and Sr isotopic characteristic of the Middle Riphean phosphorite concretions: the Zigaza–Komarovo Formation of the South Urals,” Dokl. Earth Sci. 451 (1), 798–802 (2013).

    Article  Google Scholar 

  71. G. M. Paula-Santos, S. Caetano-Filho, M. Babinski, R. I.F. Trindade, and C. Guacaneme, “Tracking connection and restriction of West Gondwana Sao Francisco Basin through isotope chemostratigraphy,” Gondwana Res. 42, 280–305 (2017).

    Article  Google Scholar 

  72. G. M. Paula-Santos, S. Caetano-Filho, M. Babinski, and J. Enzweiler, “Rare earth elements of carbonate rocks from the Bambuí Group, southern São Francisco Basin, Brazil, and their significance as paleoenvironmental proxies,” Precambrian Res. 305, 327–340 (2018).

    Article  Google Scholar 

  73. G. M. Paula-Santos, S. Caetano–Filho, J. Enzweiler, M. S. Navarro, M. Babinski, C. Guacaneme, M. Kuchenbecker, H. Reis, and R. I. F. Trindade, “Rare earth elements in the terminal Ediacaran Bambuí Group carbonate rocks (Brazil): evidence for high seawater alkalinity during rise of early animals,” Precambrian Res. 336, 105506 (2020).

    Article  Google Scholar 

  74. A. M. Pustylnikov, B. G. Kraevskii, A. N. Votintsev, and A. I. Larichev, “Stratigraphy, lithological-petrographic features and petroleum potential of the YuTZ sediments,” Structure of Reservoirs in the Carbonate Sediments of the Siberian Platform (SNIIGGiMS, Novosibirsk, 1991), pp. 120–128 [in Russian].

  75. L. S. Puzanov, “Junction zone of the Yenisei Range with adjacent structures of the Siberian platform,” Sov. Geologiya, No. 5, 135–139 (1962).

    Google Scholar 

  76. J. S. Ray, J. Veizer, and W. J. Davis, “C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events,” Precambrian Res. 121 (1–2), 103–140 (2003).

    Article  Google Scholar 

  77. J. A.S. Romero, J. M. Lafon, A. C.R. Nogueira, and J. L. Soares, “Sr isotope geochemistry and Pb–Pb geochronology of the Neoproterozoic cap carbonates, Tangará da Serra, Brazil,” Int. Geol. Rev. 55 (2), 185–203 (2013).

    Article  Google Scholar 

  78. J. Russell, B. Chadwick, Rao B. Krishna, and V. N. Vasudev, “Whole-rock Pb/Pb ages of late-Archean limestones, Karnataka, India,” Precambrian Res. 78 (4), 261–272 (1996).

    Article  Google Scholar 

  79. S. Sarangi, K. Gopalan, and S. Kumar, “Pb-Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution,” Precambrian Res. 132 (1–2), 107–121 (2004).

    Article  Google Scholar 

  80. M. A. Semikhatov, G. V. Ovchinnikova, I. M. Gorokhov, A. B. Kuznetsov, I. M. Vasileva, B. M. Gorokhovskii, and V. N. Podkovyrov, “Isotope age of the Middle–Upper Riphean boundary: Pb–Pb geochronology of the Lakhanda Group carbonates, Eastern Siberia,” Dokl. Earth Sci. 372 (4), 625–629 (2000).

    Google Scholar 

  81. M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, G. V. Konstantinova, N. N. Mel’nikov, V. N. Podkovyrov, and E. P. Kutyavin, “Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: determining factors,” Stratigraphy. Geol. Correlation 10 (1), 1–41 (2002).

    Google Scholar 

  82. M. A. Semikhatov, G. V. Ovchinnikova, I. M. Gorokhov, A. B. Kuznetsov, O. K. Kaurova, and P. Yu. Petrov, “Pb–Pb isochron age and Sr-isotopic signature of the Upper Yudoma carbonate sediments (Vendian of the Yudoma–Maya Trough, Eastern Siberia),” Dokl. Earth Sci. 393 (1), 1093–1097 (2003).

    Google Scholar 

  83. M. A. Semikhatov, A. B. Kuznetsov, A. V. Maslov, I. M. Gorokhov, and G. V. Ovchinnikova, “Stratotype of the Lower Riphean, the Burzyan Group of the Southern Urals: lithostratigraphy, paleontology, geochronology, Sr- and C-isotopic characteristics of its carbonate rocks,” Stratigraphy. Geol. Correlation 17 (6), 574–601 (2009).

    Article  Google Scholar 

  84. G. Shields, “Working towards a new stratigraphic calibration scheme for the Neoproterozoic–Cambiran,” Eclogae geol. Helv. 92, 221–233 (1999).

    Google Scholar 

  85. P. E. Smith, U. Brand, and R. M. Farquhar, “U-Pb systematics and alteration trends of Pennsylvanian-aged aragonite and calcite,” Geochim. Cosmochim. Acta. 58(1), 313–322 (1994).

    Article  Google Scholar 

  86. A. V. Sochava, V. N. Podkovyrov, and D. P. Vinogradov, “Variations of Carbon and Oxygen isotope compositions in Vendian–Lower Cambrian carbonate rocks of the Ura anticlinorium (southern Siberian Platform),” Lithol. Miner. Resour. 31 (3), 248–257 (1996).

    Google Scholar 

  87. C. W. Thomas, C. M. Graham, R. B. Ellam, and A. E. Fallick, “Chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: constraints on depositional ages and time scales,” J. Geol. Soc. London. 161 (2), 229–242 (2004).

    Article  Google Scholar 

  88. R. Tostevin, G. A. Shields, G. M. Tarbuck, T. He, M. O. Clarkson, and R. A. Wood, “Effective use of cerium as redox proxy in carbonate-dominated marine settings,” Chem. Geol. 438, 146–162 (2016).

    Article  Google Scholar 

  89. A. A. Trofimuk, Kuyumba-Yurubchen–Taiga Petroleum Reservoir—a Supergiant of the Krasnoyarsk Krai (OIGGM SO RAN, Novosibirsk, 1992) [in Russian].

    Google Scholar 

  90. I. M. Varaksina and E. M. Khabarov, “Sedimentation settings and post-sedimentation transformations of the Riphean carbonate sediments of the Kuyumba deposit,” Geol. Nefti Gaza, No. 1, 28–36 (2000).

    Google Scholar 

  91. I. M. Vasil’eva, I. M. Gorokhov, A. B. Kuznetsov, and N. G. Rizvanova, “Applciation of stepwise dissolution technique for specification of Pb-Pb age of carbonate rocks of the Kamo Group (Baikit anteclise, Siberian Platform),” Age and Correlation of Magmatic, Metamorphic, Sedimentary, and Ore-Forming Processes. Proc. 8 th  All-Russian Conference on Isotope Geochronology, St. Petersburg, Russia, 2022 (Kartfabrika VSEGEI, St. Petersburg, 2022), pp. 30–32 [in Russian].

  92. K. Y. Vasil’eva, V. B. Ershova, A. K. Khudoley, R. R. Khusnitdinov, A. B. Kuznetsov, V. Y. Prokofiev, and A. Bekker, “Diagenetic history of the proterozoic carbonates and its role in the oil field development in the Baikit Anteclise, Southwestern Siberia,” Precambrian Res. 342, 105690 (2020).

    Article  Google Scholar 

  93. J. Veizer, “Trace elements and isotopes in sedimentary carbonates, In Carbonates: Mineralogy and Chemistry, Ed. by R. J. Reeder, Rev. Mineral. (Mineral. Soc. Amer.) 11, 265-299 (1983).

  94. C. Verdel, B. Phelps, and K. Welsh, “Rare earth element and 87Sr/86Sr step-leaching geochemistry of central Australian Neoproterozoic carbonate,” Precambrian Res. 310, 229–242 (2018).

    Article  Google Scholar 

  95. V. I. Vinogradov, M. V. Korzh, I. E. Sorokina, M. I. Buyakaite, V. N. Kuleshov, E. S. Postelnikov, and A. M. Pustylnikov, “Isotopic indications of epigenetic alterations in Pre-Vendian sedimentary rocks of the Baikit Uplift, the Siberian Platform,” Lithol. Miner. Resour. 33 (3), 268–279 (1998).

    Google Scholar 

  96. T. S. Zaitseva, A. B. Kuznetsov, N. A. Ivanova, M. A. Maslennikov, V. V. Pustylnikova, T. L. Turchenko, and K. E. Nagovitsin, “ Rb–Sr age of Riphean glauconites of the Kamo Group (Baikit Anteclise, Siberian Craton),” Dokl. Earth Sci. 488 (1), 1013–1017 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.Yu. Kramchaninov, who performed part of the mass-spectrometric isotopic analysis, and K.Yu. Vasilieva for the cathodoluminescence analysis of the samples. The authors thank M.V. Shaldybin, B.B. Kochnev, and N.I. Vetrova for fruitful discussions of the manuscript and the scientific editor for his work.

Funding

This work was supported financially by the Russian Foundation for Basic Research, project 20-05-00137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gorokhov.

Additional information

Translated by M. Hannibal

The original online version of this article was revised: Multiple errors in the layout and display of symbols have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorokhov, I.M., Vasil’eva, I.M., Kuznetsov, A.B. et al. A Stepwise Dissolution Method Applied to Isotopic Chemostratigraphic and Geochronological Studies of Riphean Carbonate Rocks of the Baykit Uplift. Geochem. Int. 61, 687–702 (2023). https://doi.org/10.1134/S0016702923070030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923070030

Keywords:

Navigation