Skip to main content
Log in

Tracing the Eh–pH evolution of Cu–Pb–As–Zn supergene mineralization using detailed petrography in the Cap Garonne mineral deposit (Provence, France)

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

A Correction to this article was published on 15 April 2024

This article has been updated

Abstract

The supergene zone of the Cap Garonne mineral deposit (Provence, France) hosts one of the most remarkable mineralogy in the world with no less than 150 minerals, 16 of which are type locality. Such mineral diversity offers a detailed view of mineral and geochemical changes during weathering processes. The stratabound epigenetic primary mineralization occurs within a few meters-thick fluvial conglomerates resting above the Permian–Triassic transition and is probably related to Late Triassic–Early Jurassic hydrothermal events. The Cu–As mineralization in the lower part of the conglomerates is locally overlapped by a thin Pb–Zn-rich layer in the northern mine. The results show that the weathered part is significantly enriched in Cu, Pb, As, Zn, Ag, Ba, Sb, and Bi. The evolution of the supergene fluid is traced in an Eh–pH diagram by the succession of sulfides I (tennantite, galena), sulfides II (covellite), arsenates (olivenite), sulfates and sulfo-arsenates (brochantite, anglesite), and carbonates (malachite, azurite, cerussite). The primary sulfide oxidation acidified the host conglomerate and enabled the crystallization of secondary sulfides and arsenates. Efficient and rapid neutralization by the calcite cement of the host conglomerate and chlorite in the matrix caused successive precipitation of arsenates, sulfates, and carbonates. The supergene processes could be related to major periods of weathering in Western Europe (Early Cretaceous–Late Oligocene/Early Miocene). Erosion-prone periods may have contributed to the stripping of the Pb–Zn-rich layer in the southern mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References  

  • Alderton DHM, Selby D, Kucha H, Blundell DJ (2016) A multistage origin for Kupferschiefer mineralization. Ore Geol Rev 79:535–543. https://doi.org/10.1016/j.oregeorev.2016.05.007

    Article  Google Scholar 

  • Arrobas DLP, Hund KL, McCormick MS et al (2017) The growing role of minerals and metals for a low carbon future. The World Bank, Washington, DC, p 92

  • Aubele K, Bachtadse V, Muttoni G et al (2012) A paleomagnetic study of Permian and Triassic rocks from the Toulon-Cuers Basin, SE France: evidence for intra-Pangea block rotations in the Permian. Tectonics 31:1–15. https://doi.org/10.1029/2011TC003026

    Article  Google Scholar 

  • Bardossy G, Combes P-J (2009) Karst Bauxites: interfingering of deposition and palaeoweathering. In: Thiry M, Simon-Coinçon R (eds) Palaeoweathering, palaeosurfaces and related continental deposits. Wiley, Hoboken, pp 189–206

  • Bellot JP (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with others areas of the Variscan belt: a review. J Virtual Explor 19:24. https://doi.org/10.3809/jvirtex.2005.00116

    Article  Google Scholar 

  • Bergerat F (1985) Déformations cassantes et champs de contrainte tertiaires dans la plate-forme européenne. Ph.D Thesis, Université Pierre et Marie Curie - Paris IV, p 317

  • Blés JL, Bonijoly D, Castaing C, Gros Y (1989) Successive post-Variscan stress fields in the French Massif Central and its borders (Western European plate): comparison with geodynamic data. Tectonophysics 169:79–111. https://doi.org/10.1016/0040-1951(89)90185-6

    Article  Google Scholar 

  • Boni M, Mondillo M (2015) The “calamines” and the “others”: the great family of supergene nonsulfide zinc ore. Ore Geol Rev 67:208–233. https://doi.org/10.1016/j.oregeorev.2014.10.025

    Article  Google Scholar 

  • Bordet P, Chamley H, Blanc J (1976) Hyères - Porquerolles 2e édition XXXIV-46–47: Carte géologique de la France (1/50 000). BRGM ed, France, Orléans

  • Bouabdellah M, Boukirou W, Potra A et al (2021) Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar supergene non-sulfide biomineralization and its relevance to microbiological activity, Late Miocene uplift and climate changes. Minerals 11:401. https://doi.org/10.3390/min11040401

    Article  CAS  Google Scholar 

  • Bourquin S, Durand M, Diez JB et al (2007) The Permian-Triassic boundary and Early Triassic sedimentation in Western European basins: an overview. J Iber Geol 33:221–236

    Google Scholar 

  • Bowell RJ (2014) Hydrogeochemistry of the Tsumeb deposit: implications for arsenate mineral stability. Rev Miner Geochem 79:589–627. https://doi.org/10.2138/rmg.2014.79.14

    Article  Google Scholar 

  • Brockamp O, Clauer N (2013) Hydrothermal and unexpected diagenetic alteration in Permian shales of the Lodève epigenetic U-deposit of Southern France, traced by K-Ar illite and K-feldspar dating. Chem Geol 357:18–28. https://doi.org/10.1016/j.chemgeo.2013.08.009

    Article  CAS  Google Scholar 

  • Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer-Verlag, Berlin Heidelberg, 176p. https://doi.org/10.1016/0016-7037(89)90020-3.

  • Cassinis G, Durand M, Ronchi A (2003) Permian-Triassic continental sequences of Northwest Sardinia and South Provence: stratigraphic correlations and palaeogeographical implications. Boll Della Soc Geol Ital 2:119–129

    Google Scholar 

  • Chiappero P-J (1993) Les arséniates de cuivre naturels : Systèmatique et approche des conditions de genèse par les synthèses. Université d’Orléans, BRGM Orléans, Applications au gisement plumbocuprifère de Cap Garonne (Var, France), p 293p

    Google Scholar 

  • Choulet F, Charles N, Barbanson L et al (2014) Non-sulfide zinc deposits of the Moroccan High Atlas: multi-scale characterization. Ore Geol Rev 56:115–140. https://doi.org/10.1016/j.oregeorev.2013.08.015

    Article  Google Scholar 

  • Ciantia MO, Castellanza R (2016) Modelling weathering effects on the mechanical behaviour of rocks. Eur J Environ Civ Eng 20:1054–1082. https://doi.org/10.1080/19648189.2015.1030086

    Article  Google Scholar 

  • Clauer N (2020) The Post-Variscan tectonic-thermal activity in the southeastern metalliferous province of the French Massif Central revisited with K-Ar ages of illite. Ore Geol Rev 117:103300. https://doi.org/10.1016/j.oregeorev.2019.103300

    Article  Google Scholar 

  • Combes PJ (1990) Typologie, cadre géodynamique et genèse des bauxites françaises. Geodin Acta 4:91–109. https://doi.org/10.1080/09853111.1990.11105202

    Article  Google Scholar 

  • Combes P-J, Bardossy G (1996) Geodynamics of Bauxites in the Tethyan realm. In: Nairn AEM, Ricou L-E, Vrielynck B et al. (eds) The Tethys Ocean. Springer, Boston, pp 347–365

  • Craw D (2000) Water-rock interaction and acid neutralization in a large schist debris dam, Otago, New Zealand. Chem Geol 171:17–32. https://doi.org/10.1016/S0009-2541(00)00231-X

    Article  CAS  Google Scholar 

  • Crevola G, Pupin J-P, Toutin-Morin N (1991) La Provence varisque : structure et évolution géologique anté-triasique/Variscan Provence : structure and Ante-Triassic geologic evolution. Sci Geol Bull 44:287–310. https://doi.org/10.3406/sgeol.1991.1869

    Article  Google Scholar 

  • Dal Bo F, Hatert F, Philippo S (2018) Supergene uranyl mineralization of the Rabejac deposit, Lodève, France. Minerals 8:1–22. https://doi.org/10.3390/min8090414

    Article  CAS  Google Scholar 

  • De Putter T, Ruffet G (2020) Supergene manganese ore records 75 Myr-long Campanian to Pleistocene geodynamic evolution and weathering history of the Central African Great Lakes Region – tectonics drives, climate assists. Gondwana Res 83:96–117. https://doi.org/10.1016/j.gr.2020.01.021

    Article  CAS  Google Scholar 

  • De Putter T, Ruffet G, Yans J, Mees F (2015) The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes region. Ore Geol Rev 71:350–362. https://doi.org/10.1016/j.oregeorev.2015.06.015

    Article  Google Scholar 

  • Dekoninck A, Monié P, Blockmans S et al (2019) Genesis and 40Ar/39Ar dating of K-Mn oxides from the Stavelot Massif (Ardenne, Belgium): insights into Oligocene to Pliocene weathering periods in Western Europe. Ore Geol Rev 115:103191. https://doi.org/10.1016/j.oregeorev.2019.103191

    Article  Google Scholar 

  • Demory F, Conesa G, Oudet J et al (2011) Magnetostratigraphy and paleoenvironments in shallow-water carbonates: the Oligocene-Miocene sediments of the northern margin of the Liguro- Provençal Basin (West Marseille, Southeastern France). Bull La Soc Geol Fr 182:37–55. https://doi.org/10.2113/gssgfbull.182.1.37

    Article  Google Scholar 

  • Demoulin A, Barbier F, Dekoninck A, et al (2018) Erosion surfaces in the Ardenne–Oesling and their associated kaolinic weathering mantle. In: Landscapes and landforms of Belgium and Luxembourg. World Geomorphological Landscapes. Springer, Cham 63–84. https://doi.org/10.1007/978-3-319-58239-9_5.

  • Dill HG (2020) A geological and mineralogical review of clay mineral deposits and phyllosilicate ore guides in Central Europe – a function of geodynamics and climate change. Ore Geol Rev 119:103304. https://doi.org/10.1016/j.oregeorev.2019.103304

    Article  Google Scholar 

  • Dobrev S, Strashimirov S, Vassileva M, Dragiev H (2002) Silver and silver-bearing phases from Chala and Pcheloiad deposits (Eastern Rhodopes) and Eniovche deposit (Central Rhodopes). Annu Univ Min Geol “St Ivan Rilski”, Sofia, 45(1):39–44

  • Duchesne JC, Liégeois JP, Bolle O et al (2013) The fast evolution of a crustal hot zone at the end of a transpressional regime: the Saint-Tropez peninsula granites and related dykes (Maures Massif, SE France). Lithos 162–163:195–220. https://doi.org/10.1016/j.lithos.2012.12.019

    Article  CAS  Google Scholar 

  • Durand M (2008) Permian to Triassic continental successions in southern Provence (France): an overview. Boll Della Soc Geol Ital 127:697–716

    Google Scholar 

  • Durand M, Meyer R, Avril G (1989) Le Trias détritique de Provence, du dome de Barrot et du Mercantour. Publ Assoc Sédimentol Français 6:1–135

    Google Scholar 

  • Espurt N, Wattellier F, Philip J et al (2019) Mesozoic halokinesis and basement inheritance in the eastern Provence fold-thrust belt, SE France. Tectonophysics 766:60–80. https://doi.org/10.1016/j.tecto.2019.04.027

    Article  Google Scholar 

  • European Commission, Directorate general for internal market, industry, entrepreneurship and SMEs, Grohol M, Veeh C (2023) Study on the EU’s list of critical raw materials (2023): final report. Publications Office of the European Union, Luxembourg

  • Favreau G, Galéa-Clolus V, Brun P, et al (2014) Cap Garonne. Association Française de Microminéralogie, Castelnau-le-Lez, p 310

  • Fontaine L, De Putter T, Bernard A, Decrée S, Cailteux J, Wouters J, Yans J (2020) Complex mineralogical-geochemical sequences and weathering events in the supergene ore of the Cu–Co Luiswishi deposit (Katanga, D.R. Congo). J African Earth Sci 161:103674. https://doi.org/10.1016/j.jafrearsci.2019.103674

    Article  CAS  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL (2017) Minor and trace elements in natural tetrahedrite-tennantite: effects on element partitioning among base metal sulphides. Minerals 7:1–25. https://doi.org/10.3390/min7020017

    Article  CAS  Google Scholar 

  • Gerbault M, Schneider J, Reverso-Peila A, Corsini M (2018) Crustal exhumation during ongoing compression in the Variscan Maures-Tanneron Massif, France-geological and thermo-mechanical aspects. Tectonophysics 746:439–458. https://doi.org/10.1016/j.tecto.2016.12.019

    Article  CAS  Google Scholar 

  • Gilg HA, Frei R (1997) Isotope dating of residual kaolin deposits in Europe (Tirschenreuth, Germany and St. Yrieix, France). In: Rongfu P (ed) Energy and mineral resources for the 21st century, geology of mineral deposits, mineral economics: proceedings of the 30th international geological congress, Beijing, China, pp 123–133

  • Gourdon-Platel N, Platel J-P, Astruc JG (2000) La Formation de Rouffignac, témoin d’une paléoaltérite cuirassée intra-Eocène en Périgord-Quercy. Geol Fr 1:65–74

    Google Scholar 

  • Gouvernet C, Blanc J-J, Philip J et al (1969) Toulon XXXIII-46: Carte géologique détaillée de la France (1/50 000). BRGM ed, France, Orléans

  • Grey IE, Favreau G, Mills SJ et al (2021) Galeaclolusite, [Al6(AsO4)3(OH)9 (H2O)4 ]⋅8H2O, a new bulachite-related mineral from Cap Garonne, France. Mineral Mag 85:142–148. https://doi.org/10.1180/mgm.2020.98

    Article  CAS  Google Scholar 

  • Guieu G (1990) Arguments for the pre-rift uplift and rift propagation in the Ligurian-Provencal Basin (Northwestern Mediterranean) in the light of Pyrenean Porvencal orogeny. Tectonics 9:1113–1142. https://doi.org/10.1029/TC009i005p01113

    Article  Google Scholar 

  • Guilbert JM, Park CF (1986) The geology of ore deposits. W. H. Freeman and Company, New York, p 985

  • Guillemin C (1952) Etude minéralogique et métallogénique du gîte plumbocuprifère du Cap Garonne (Var). Bull Soc Fran Miner Cristallogr 75:70–160. https://doi.org/10.3406/bulmi.1952.4765

    Article  CAS  Google Scholar 

  • Guyonnet-Benaize C, Lamarche J, Masse JP, Villeneuve M, Viseur S (2010) 3D structural modelling of small-deformations in poly-phase faults pattern. Application to the Mid-Cretaceous Durance Uplift, Provence (SE France). J Geodyn 50:81–93. https://doi.org/10.1016/J.JOG.2010.03.003

    Article  Google Scholar 

  • Hautmann S, Lippolt HJ (2000) 40Ar/39Ar dating of central European K-Mn oxides - a chronological framework of supergene alteration processes during the Neogene. Chem Geol 170:37–80. https://doi.org/10.1016/S0009-2541(99)00241-7

    Article  CAS  Google Scholar 

  • Hitchon B (2006) Lead and zinc in formation waters, Alberta Basin, Canada: their relation to the Pine Point ore fluid. Appl Geochemistry 21:109–133. https://doi.org/10.1016/j.apgeochem.2005.09.010

    Article  CAS  Google Scholar 

  • Hitzman MW, Reynolds NA, Sangster DF et al (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ Geol 98:685–714. https://doi.org/10.2113/gsecongeo.98.4.685

    Article  CAS  Google Scholar 

  • Inegbenebor AI, Thomas JH, Williams PA (1989) The chemical stability of mimetite and distribution coefficients for pyromorphite–mimetite solid-solutions. Mineral Mag 53:363–371. https://doi.org/10.1180/minmag.1989.053.371.12

    Article  CAS  Google Scholar 

  • Jacobs JA, Lehr JH, Testa SM (2014) Acid mine drainage, rock drainage, and acid sulfate soils. Willey, New Jersey, p 504p

    Book  Google Scholar 

  • Jakni B (2000) Thermochronologie par traces de fission des marges conjuguées du bassin liguro-provençal: la Corse et le massif des Maures-Tanneron. Université de Grenoble I, France, Thesis, p 344

    Google Scholar 

  • Keim MF, Staude S, Marquardt K et al (2018) Weathering of Bi-bearing tennantite. Chem Geol 499:1–25. https://doi.org/10.1016/j.chemgeo.2018.07.032

    Article  CAS  Google Scholar 

  • Krahn L, Baumann A (1996) Lead isotope systematics of epigenetic lead-zinc mineralization in the western Part of the Rheinisches Schiefergebirge, Germany. Miner Depos 31:225–237. https://doi.org/10.1007/BF00204029

    Article  CAS  Google Scholar 

  • Le Berre JF, Cheng TC, Gauvin R, Demopoulos GP (2007) Hydrothermal synthesis and stability evaluation of iron (III)-aluminum (III) arsenate solid solutions. Metall Mater Trans B Process Metall Mater Process Sci 38:159–166. https://doi.org/10.1007/s11663-007-9032-7

    Article  CAS  Google Scholar 

  • Leach DL, Bradley D, Lewchuk MT, Symons DTA, De Marsily G, Brannon J (2001) Mississippi valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Miner Depos 36:711–740. https://doi.org/10.1007/s001260100208

    Article  CAS  Google Scholar 

  • Li H, Zhu DP, Shen LW et al (2022) A general ore formation model for metasediment-hosted Sb-(Au-W) mineralization of the Woxi and Banxi deposits in South China. Chem Geol 607:121020. https://doi.org/10.1016/j.chemgeo.2022.121020

  • Lustrino M, Fedele L, Agostini S et al (2017) Eocene-Miocene igneous activity in Provence (SE France): 40Ar/39Ar data, geochemical-petrological constraints and geodynamic implications. Lithos 288–289:72–90. https://doi.org/10.1016/j.lithos.2017.07.008

    Article  CAS  Google Scholar 

  • Magalhães MCF, Pedrosa de Jesus JD, Williams PA (1988) The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Mineral Mag 52:679–690. https://doi.org/10.1180/minmag.1988.052.368.12

    Article  Google Scholar 

  • Majzlan J, Nielsen UG, Dachs E et al (2018) Thermodynamic properties of mansfieldite (AlAsO4·2H2O), angelellite (Fe4(AsO4)2O3) and kamarizaite (Fe3(AsO4)2(OH)3·3H2O). Mineral Mag 82:1333–1354. https://doi.org/10.1180/mgm.2018.107

    Article  CAS  Google Scholar 

  • Malusà MG, Danišík M, Kuhlemann J (2016) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149. https://doi.org/10.1016/j.gr.2014.12.011

    Article  CAS  Google Scholar 

  • Mills SJ, Rumsey MS, Favreau G et al (2011) Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile. Mineral Mag 75:135–144. https://doi.org/10.1180/minmag.2011.075.1.135

    Article  CAS  Google Scholar 

  • Mills SJ, Kampf AR, McDonald AM et al (2012) Forêtite, a new secondary arsenate mineral from the Cap Garonne mine, France. Mineral Mag 76:769–775. https://doi.org/10.1180/minmag.2012.076.3.24

    Article  CAS  Google Scholar 

  • Mills SJ, Kolitsch U, Favreau G et al (2020) Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany. Eur J Mineral 32:637–644. https://doi.org/10.5194/EJM-32-637-2020

    Article  CAS  Google Scholar 

  • Molliex S (2009) Caractérisation de la déformation tectonique récente en Provence (SE France). University Paul Cézanne, Marseille, p 346p

    Google Scholar 

  • Mondillo N, Balassone G, Boni M et al (2019) Rare earth elements (REE) in Al- and Fe-(Oxy)-hydroxides in Bauxites of Provence and Languedoc (Southern France): implications for the potential recovery of REEs as by-products of Bauxite mining. Minerals 9:504. https://doi.org/10.3390/min9090504

    Article  CAS  Google Scholar 

  • Nickel E, Williams P, Downes P (2007) Secondary minerals in a tennantite boxwork from the Bali Lo prospect, Ashburton Downs. Western Australia Aust J Mineral 13(1):31–39

    Google Scholar 

  • Oudet J, Munch P, Borgomano J, Quillevere F, Melinte-Dobrinescu MC, Demory F, Viseur S, Cornee JJ (2010) Land and sea study of the northeastern golfe du Lion rifted margin: the Oligocene - Miocene of Southern Provence (Nerthe Area, SE France. Bull La Soc Geol Fr 181:591–607. https://doi.org/10.2113/gssgfbull.181.6.591

    Article  Google Scholar 

  • Poort RJ, Veld H (1997) Aspects of Permian palaeobotany and palynology. XVIII. On the morphology and ultrastructure of Potonieisporites novicus (prepollen of Late Carboniferous/Early Permian Walchiaceae). Acta Bot Neerl 46:161–173. https://doi.org/10.1111/plb.1997.46.2.161

    Article  Google Scholar 

  • Poot J, Verhaert M, Dekoninck A et al (2020) Characterization of weathering processes of the giant copper deposit of Tizert (Igherm inlier, Anti-atlas, Morocco). Minerals 10(7):620. https://doi.org/10.3390/min10070620

    Article  CAS  Google Scholar 

  • Prodehl C, Mueller St, Haak V (2006) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics, developments in geotectonics. Elsevier, pp 133–212

  • Radková AB, Jamieson H, Lalinská-Voleková B et al (2017) Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and L’ubietová-Svätodušná, Slovakia. Am Mineral 102:1091–1100. https://doi.org/10.2138/am-2017-5616

    Article  Google Scholar 

  • Reich M, Vasconcelos PM (2015) Geological and economic significance of supergene metal deposits. Elements 11:305–310. https://doi.org/10.2113/gselements.11.5.305

    Article  CAS  Google Scholar 

  • Robb LJ (2005) Introduction to ore-forming processes. Blackwell Science Ltd, Oxford, p 373p

    Google Scholar 

  • Sangameshwar SR, Barnes HL (1983) Supergene processes in zinc-lead-silver sulfide ores in carbonates. Econ Geol 78:1379–1397. https://doi.org/10.2113/gsecongeo.78.7.1379

    Article  CAS  Google Scholar 

  • Schmitt JM (1986) Albitisation triasique, hydrothermalisme jurassique et altération supergène récente: métallogénie des gisements uranifères du Rouergue. Unpublished Ph.D thesis, Université de Strasbourg

  • Schmitt J-M (1992) Triassic albitization in southern France: an unusual mineralogical record from a major continental paleosurface. In: Schmitt J-M, Gall Q (eds) Mineralogical and geochemical records of paleoweathering. ENSMP Mém Sc de la Terre, Strasbourg, pp 115–132

  • Schneider J, Haack U, Hein UF, Germann A, Stanley CJ (1999) Direct Rb-Sr dating of sandstone-hosted sphalerites from stratabound Pb-Zn deposits in the Northern Eifel, NW Rhenish Massif, Germany. In: Stanley CJ et al (eds) Mineral deposits: processes to processing, Balkema, Rotterdam: pp 1287–1290

  • Sibuet JC, Srivastava SP, Spakman W (2004) Pyrenean orogeny and plate kinematics. J Geophys Res Solid Earth 109:1–18. https://doi.org/10.1029/2003JB002514

    Article  Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) One hundredth anniversary volume. Soc Econ Geol, pp 723–768

  • Sillitoe RH (2012) Copper provinces. In: Hedenquist JW, Harris M, Camus F (eds) Geology and Genesis of major copper deposits and districts of the world: a tribute to Richard H. Society of Economic Geologists, Sillitoe, pp 1–18

    Google Scholar 

  • Sillitoe RH (2019) Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: response to subduction of the Chile Ridge. Miner Deposita 54:381–394. https://doi.org/10.1007/s00126-018-0814-4

    Article  CAS  Google Scholar 

  • Simon-Coinçon R, Thiry M, Schmitt J-M (1997) Variety and relationships of weathering features along the early Tertiary palaeosurface in the southwestern French Massif Central and the nearby Aquitaine Basin. Palaeogeog, Palaeoclim, Palaeoeco 129:51–79. https://doi.org/10.1016/S0031-0182(96)00122-8

    Article  Google Scholar 

  • Števko M, Sejkora J (2012) Supergene arsenates of copper from Špania Dolina-Piesky deposit, Central Slovakia. Acta Miner-Petro, Abstract Series 7:130

    Google Scholar 

  • Taylor R (2011) Gossans and leached cappings: field assessment. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Thiry M, Quesnel F, Yans J et al (2006) Continental France and Belgium during the Early Cretaceous: paleoweatherings and paleolandforms. Bull La Soc Geol Fr 177:155–175. https://doi.org/10.2113/gssgfbull.177.3.155

    Article  Google Scholar 

  • Toutin-Morin N, Bonijoly D (1992) Structuration des bassins de Provence orientale a la fin de l’ère primaire. J Iber Geol an Int Publ Earth Sci 16:59–74. https://doi.org/10.5209/rev_CGIB.1992.v16.2610

    Article  Google Scholar 

  • Toutin-Morin N, Bonijoly D, Brocard C et al (1993) Enregistrement sédimentaire de l’évolution post-hercynienne en bordure des Maures et du Tanneron, du Carbonifère supérieur à l’Actuel. Geol Fr 2:3–22

    Google Scholar 

  • Toutin-Morin N, Vinchon C (1989) Les bassins permiens du Sud-Est. In: Châeauneuf JJ, Farjanel G (eds) Synthèse géologique des bassins permiens français. BRGM, pp 114–121

  • Tyszka R, Kierczak J, Pietranik A, Ettler V, Mihaljevič M (2014) Extensive weathering of Zinc smelting slag in a heap in upper silesia (Poland): potential environmental risks posed by mechanical disturbance of slag deposits. Appl Geoch 40:70–81. https://doi.org/10.1016/j.apgeochem.2013.10.010

    Article  CAS  Google Scholar 

  • Van Langendonck S, Muchez P, Dewaele S et al (2013) Petrographic and mineralogical study of the sediment-hosted Cu-Co ore deposit at Kambove West in the central part of the Katanga Copperbelt (DRC). Geol Belgica 16:91–104

    Google Scholar 

  • Vassileva RD, Atanassova R, Kouzmanov K (2014) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria. Mineral Petrol 108:515–531. https://doi.org/10.1007/s00710-013-0316-0

    Article  CAS  Google Scholar 

  • Vavelidis M, Melfos V (2004) Bi-Ag-bearing tetrahedrite-tennantite in the Kapsalina copper mineralisation, Thasos island, Northern Greece. Neues Jahrb Fur Mineral Abhandlungen 180(2):149–169. https://doi.org/10.1127/0077-7757/2004/0180-0149

    Article  CAS  Google Scholar 

  • Verhaert M, Bernard A, Dekoninck A et al (2017) Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the oriental High Atlas, Morocco. Miner Depos 52:1049–1068. https://doi.org/10.1007/s00126-017-0753-5

    Article  CAS  Google Scholar 

  • Verhaert M, Bernard A, Saddiqi O, Dekoninck A, Essalhi M, Yans J (2018) Mineralogy and Genesis of the polymetallic and polyphased low grade Fe-Mn-Cu ore of Jbel Rhals deposit (Eastern High Atlas, Morocco). Minerals 8:39. https://doi.org/10.3390/min8020039

    Article  CAS  Google Scholar 

  • Verhaert M, Madi A, El Basbas A et al (2020) Genesis of As-Pb–rich supergene mineralization: the Tazalaght and Agoujgal Cu deposits (Moroccan Anti-Atlas Copperbelt). Econ Geol 115:1725–1748. https://doi.org/10.5382/ECONGEO.4779

    Article  Google Scholar 

  • Vink BW (1986) Stability relations of malachite and azurite. Mineral Mag 50:41–47

    Article  CAS  Google Scholar 

  • Vuillet J (1955) Etude géologique du Massif de la Colle Noire, à l’Est de Toulon. Univeristé des sciences de Marseille, Marseille, p 33p

    Google Scholar 

  • Woods R, Yoon RH, Young CA (1987) Eh-pH diagrams for stable and metastable phases in the copper-sulfur-water system. Int J Miner Process 20:109–120. https://doi.org/10.1016/0301-7516(87)90020-2

    Article  CAS  Google Scholar 

  • Wyns R, Quesnel F, Simon-Coincon R, Guillocheau F, Lacquement F (2003) Major weathering in France related to lithospheric deformation. Geol Fr 1:79–87

    Google Scholar 

  • Yans J, Verhaert M, Gautheron C et al (2021) (U-Th)/He dating of supergene iron (oxyhydr-)oxides of the Nefza-Sejnane district (Tunisia): new insights into mineralization and mammalian biostratigraphy. Minerals 11(3):260. https://doi.org/10.3390/min11030260

    Article  CAS  Google Scholar 

  • Zarki-Jakni B, van der Beek P, Poupeau G, Sosson M, Labrin E, Rossi P, Ferrandini J (2004) Cenozoic denudation of Corsica in response to Ligurian and Tyrrhenian extension: results from apatite fission track thermochronology. Tectonics 23(1):TC1003. https://doi.org/10.1029/2003TC001535

    Article  Google Scholar 

  • Zheng JS, Mermet J-F, Toutin-Morin N et al (1992) 40Ar-39Ar dating of Permian magmatism and fluorite-baryte veins of eastern Provence (France). Geodin Acta 5:203–215

    Article  Google Scholar 

Download references

Acknowledgement

Many thanks to the AAMCG (Association des Amis de la Mine du Cap Garonne) and more particularly to V. Galéa-Clolus, P. Clolus, and H. Bono for their reception, access to the mine, and sampling. We also thank N. Tumanov and J. Wouters from the PC2 platform of the University of Namur (UNamur) for recording the XRD spectra. This research used resources of the Electron Microscopy Service, which is a member of the “Plateforme Technologique Morphologie–Imagerie” of the UNamur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Poot.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: J. Mercadier

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Author names were reversed and has been corrected.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 24 KB)

Supplementary file2 (XLSX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poot, J., Buelens, P., Dekoninck, A. et al. Tracing the Eh–pH evolution of Cu–Pb–As–Zn supergene mineralization using detailed petrography in the Cap Garonne mineral deposit (Provence, France). Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01258-3

Keywords

Navigation