Skip to main content
Log in

Granophyre Norites and Diorites of the Jarva-Varaka Massif (Monchegorsk Ore Area, Kola Region, Russia): Geology, Petrography, Geochemistry, Geochronology and Origin

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The results of geological, geochemical, and geochronological studies of granophyre rocks from the Jarva-Varaka Massif (Kola region) are presented. The 2-km section of the massif is composed of mafic and felsic norites, hypersthene diorite, pigeonite-augitic diorite, quartz diorite, and granodiorite. All these rocks contain a variable amount of granophyre (micropegmatite), from ~10% in norites that compose the lower part of the massif, to ~45% in quartz diorite and granodiorite of the upper part. The Sudbury Igneous Complex (SIC) is the only known case of a similar 2-km thick section of granophyre rocks whose composition varies from mafic at the bottom to felsic at the top. The SIC has an impact origin, which suggests a similar formation mechanism for the Jarva-Varaka Massif. The norites contain micro-xenoliths of the host high-alumina gneisses, which were transformed to rocks of the high-grade hornfels facies. Such gneisses are absent among the country rocks of other mafic intrusions in the area, and it suggests that the parental melt for mafic norites could have assimilated the host rocks. Given the relatively small size of the massif, the formation of hornfelses could have occurred if the xenoliths would be entrained by a melt under near-surface conditions, and the melt was hot enough to cause the formation of hornfelses. Spinifex-like structures in the diorites of the very marginal contact zone of the Jarva-Varaka Massif indicate very rapid cooling of a high-temperature melt, which is typical of near-surface conditions. A pseudotachylitic breccia, planar deformations in quartz, kink-bands in biotite and clinozoisite, zircon and inclusions of sillimanite and plagioclase all transformed into diaplectic glasses detected in the host rocks of the Jarva-Varaka Massif are interpreted as distinct signs of shock metamorphism. Geophysical data show no signs that beneath the Jarva-Varaka Massif there exists a large mafic intrusion that could have contaminated large volumes of crustal material, and magmatic differentiation of which could have produced a large volume of enriched melt whose crystallization could resulted in the formation of granophyre rocks from the bottom to the top of the magma chamber. All of the aforementioned data indicate that the impact origin of the 2.5 Ga Jarva-Varaka Massif is very likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The mineral abbreviations are after (Whitney and Evans, 2010).

REFERENCES

  1. H. Austrheim and F. Corfu, “Formation of planar deformation features (PDFs) in zircon during coseismic faulting and an evaluation of potential effects on U-Pb systematic,” Chem. Geol. 261, 25–31 (2009).

    Article  Google Scholar 

  2. I. D. Batieva, I. V. Belkov, V. R. Vetrin, A. N. Vinogradov, G. V. Vinogradova, and M. I. Dubrovsky, Precambrian Granitoid Formations of the Northeastern Part of the Baltic Shield (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  3. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatism Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  4. M. G. Bjornerud and J. F. Magloughlin, “Pressure–related feedback processes in the generation of pseudotachylytes,” J. Struct. Geol. 26, 2317–2323 (2004).

    Article  Google Scholar 

  5. E. S. Borisenko, T. B. Bayanova, L. I. Nerovich, and E. L. Kunakkuzin, “Paleoproterozoic mafic Monchetundra massif (Kola Peninsula): new geological and geochronological data,” Dokl. Earth Sci. 465 (1), 1107–1111 (2015).

    Article  Google Scholar 

  6. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” In Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114

    Google Scholar 

  7. R. G. Cawthorn, “The residual or roof zone of the Bushveld Complex, South Africa,” J. Petrology 54 (9), 1875–1900 (2013).

    Article  Google Scholar 

  8. G. Chai and R. Eckstrand, “Rare-earth element characteristics and origin of the Sudbury Igneous Complex, Ontario, Canada,” Chem. Geol. 113, 221–244 (1994).

    Article  Google Scholar 

  9. Chemical Analyses of Rocks of the Precambrian Basic–Ultrabasic Complexes of the Kola Peninsula, Ed. by G.I. Gorbunov (KolFAN USSR, Apatity, 1982) [in Russian].

  10. D. S. Cowan, “Do faults preserve a record of seismic slip? A field geologist’s opinion,” J. Struct. Geol. 21, 995–1001 (1999).

    Article  Google Scholar 

  11. C. G. Cox, J. D. Bell, and R. J. Pankhurst, Igneous Rocks Interpretation (Nedra, Moscow, 1982).

    Google Scholar 

  12. J. Day, D. G Pearson, and L. Hulbert, “Rhenium-osmium isotope and platinum-group element constraints on the origin and evolution of the 1.27 Ga Muskox layered intrusion,” J. Petrol. 49 (7), 1255–1295 (2008).

    Article  Google Scholar 

  13. A. Deutsch, D. Bull, P. Brockmeyer, R. Lakomy, and M. Flucks, “Isotope systematics support the impact origin. In Volume of abstracts, Intemational Conference on Large Meteorite Impacts and Planetary Evolution, Lunar and Planetary Institute Contibution, Lunar Planet. Inst. Contrib. 790, 21–22 (1992).

  14. R. S. Dietz, “Vredefort ring structure: meteorite impact scar?,” J. Geol. 69, 499–516 (1961).

    Article  Google Scholar 

  15. V. S. Dokuchaeva and V. V. Borisova, “On geology and petrography of the Jarva-Varaka massif (Monchegorsk region),” Regional Geology, Metallogeny, and Geophysics (KSC RAS, Apatity, 1974), pp. 82–87 [in Russian].

    Google Scholar 

  16. K. A. Dokukina and P. A. Dokukin, “Tectonic breccias of the Belomorian eclogite province (Gridino area): evidence of paleoseismic dislocations in the Mesoarchean subduction zone,” Geol. Geotect., No. 2, 17–39 (2015).

  17. Explanatory Note to the Geological Map of the Murmansk Region. Scale 1:200000. Sheet Q-36-III, IV, Ed. by A. M. Remizova (Apatity, 2007).

    Google Scholar 

  18. B. E. Faggart, A. B. Basu, and M. Tatsuimoto, “Origin of the Sudbury Complex by meteorite impact: neodymium isotopic evidence,” Science 230, 436–439 (1985).

    Article  Google Scholar 

  19. V. I. Feldman and L. I. Glazovskaya, Impactogenesis: a Textbook (KDU, Moscow, 2018). [in Russian].

    Google Scholar 

  20. V. I. Feldman, L. V. Sazonova, and E. A. Kozlov, “Impact metamorphism of some rock–forming minerals (experimental and natural data),” Petrology 14 (6), 540–566 (2006).

    Article  Google Scholar 

  21. V. T. Filatova, “Three-dimensional model of the Monchegorsk ore region based on gravimagnetic data,” Otechestvennaya Geol., No. 10, 65–72 (1995).

  22. B. M. French, Traces of Catastrophe: A Handbook of Shock–Metamorphic Effects in Terrestrial Meteorite Impact Structures (LPI Contribution, Houston, 1998).

    Google Scholar 

  23. B. M. French and C. Koeberl, “The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why,” Earth-Sci. Rev. 98, 123–170 (2010).

    Article  Google Scholar 

  24. R. L. Gibson and R. A. and Reimold W.U. Armstrong, “The age and thermal evolution of the Vredefort impact structure: a single-grain U-Pb zircon study,” Geochim. Cosmochim. Acta. 61, 1531–1540 (1997).

    Article  Google Scholar 

  25. Igneous Rocks, Ed. by O. A. Bogatikov (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  26. E. Ikesawa, A. Sakaguchi, and G. Kimura, “Pseudotachylyte from an ancient accretionary complex: evidence for melt generation during seismic slip along a master decollement?,” Geology 31, 637–640 (2003).

    Article  Google Scholar 

  27. T. V. Kaulina, L. I. Nerovich, V. N. Bocharov, L. M. Lyalina, V. L. Ilchenko, E. L. Kunakkuzin, and I. A. Kasatkin, “Raman spectroscopy of impact zircon from the layered Jarva-Varaka massif (Monchegorsk ore region, Kola Peninsula),” Bull. MSTU 20 (1/1), 72–82 (2017).

  28. T. V. Kaulina, L. I. Nerovich, V. L. Il’chenko, L. M. Lialina, E. L. Kunakkuzin, M. A. Ganninbal, S. V. Mudruk, D. V. Elizarov, and E. S. Borisenko, “Astroblems in the early Earth history: Precambrian impact structures of the Kola-Karelian region (East Baltic shield),” In: Geological and Geo-Environmental Processes on Earth, Ed. by A. K. Shandilya, V. K. Singh, S. C. Bhatt, C. S. Dubey (Springer, 2021),pp. 25–37.

    Google Scholar 

  29. T. E. Krogh, “A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations,” Geochim. Cosmohim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  30. Layered Intrusions of the Monchegorsk Ore Region: Petrology, Mineralization, Isotopy, Deep Structure, Ed. by F. P. Mitrofanov and V. F. Smolkin (Ed. KSC RAS, Apatity, 2004) [in Russian].

    Google Scholar 

  31. P. C. Lightfoot, R. R. Keys, and W. Doherty, “Chemical evolution and origin of nickel sulfide mineralization in the Sudbury Igneous Complex, Ontario, Canada,” Econ. Geol. 96, 1855–1875 (2001).

    Google Scholar 

  32. A. Lin, Z. Sun, and Z. Yang, “Multiple generations of pseudotachylyte in the brittle to ductile regimes, Quinling–Dabie Shan ultrahigh–pressure metamorphic complex, central China,” The Island Arc 12, 440–452 (2003).

    Article  Google Scholar 

  33. K. R. Ludwig, “User’s manual for Isoplot Version 3.75–4.15: a geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center, Spec. Publ., No. 5 (2012).

  34. J. F. Magloughlin, “Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: the cataclasite–pseudotachylyte connection,” Tectonophysics 204, 243–260 (1992).

    Article  Google Scholar 

  35. V. L. Masaitis, A. N. Danilin, M. S. Mashchak, A. I. Raikhlin, T. V. Selivanovskaya, and E. M. Shadenkov, Geology of Astroblems (Nedra, Leningrad, 1980) [in Russian].

    Google Scholar 

  36. F. P. Mitrofanov, T. B. Bayanova, A. U. Korchagin, N. Y. Groshev, K. N. Malitch, D. V. Zhirov, and A. F. Mitrofanov, “East Scandinavian and Noril’sk plume mafic large igneous provinces of Pd–Pt ores: Geological and metallogenic comparison,” Geol. Ore Deposits 55, 305–319 (2013).

    Article  Google Scholar 

  37. A. J. Naldrett, Igneous Sulfide Deposits of Copper–nickel and Platinum–Metal Ores (St. Petersb. Gos. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  38. L. I. Nerovich, T. B. Bayanova, E. L. Kunakkuzin, A. V. Bazai, and D. A. Nekipelov, “New results of the geological-petrographic and petro-geochemical study of the layered Yarva–Varaka massif (Monchegorsk ore district). Proc. 12 th Fersman Scientific Session of the GI KSC RAS (Apatity, 2015), pp. 141–146 [in Russian].

  39. L. I. Nerovich, A. V. Bazai, and E. L. Kunakkuzin, “Material composition of microxenoliths in mafic norites of the Jarva–Varaka massif,” Proc. 16 th Fersman Scientific Session of the GI KSC RAS (Apatity, 2019), pp.418–420 [in Russian].

  40. L. I. Nerovich, V. L. Ilchenko, T. V. Kaulina, A. V. Bazai, E. L. Kunakkuzin, S. V. Mudruk, E. S. Borisenko, and M. A. Sosnovskaya, “The first find of pseudotachylitic breccia and other signs of impact metamorphism in the rocks of the framing of the Jarva-Varaka massif (Monchegorsk ore region),” Proc. 17 th Fersman Scientific Session of the GI KSC RAS (Apatity, 2020), pp. 384–389.

  41. G. R. Osinski and E. Pierazzo, Impact Cratering: Processes and Products (John Wiley & Sons, 2012). 0

    Book  Google Scholar 

  42. S. V. Panteeva, D. P. Gladkochoub, T. V. Donskaya, V. V. Markova, and G. P. Sandimirova, “Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion,” Spectrochim. Acta Part B: Atomic Spectroscopy. 58 (2), 341–350 (2003).

    Article  Google Scholar 

  43. E. F. Pattison, “Sudbury Igneous Complex: in a field guide to the geology of sudbury,” Ontario Geol. Surv. Open File Rept., No. 6243, 56–74 (2009).

  44. W. U. Reimold and C. Koeberl, “Impact structures in Africa: a review,” J. Afr. Earth Sci. 93, 57–175 (2014).

    Article  Google Scholar 

  45. S. J. Shand, “The pseudotachylyte of Parijs (Orange Free State) and its re1ation to “Trapschotten–Gneiss” and “Flint–Crush–Rocks,” Geo1. Soc. London Quart. 72 (1916).

  46. E. V. Sharkov, Petrology of Layered Intrusions (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  47. E. V. Sharkov, O. A. Bogatikov, and I. S. Krasivskaya, “The role of mantle plumes in the Early Precambrian tectonics of the eastern part of the Baltic Shield,” Geotectonics 34 (2), 3–25 (2000).

    Google Scholar 

  48. R. H. Sibson, “Generation of pseudotachylyte by ancient seismic faulting,” Royal Astronom. Soc. Geophys. J. 43, 775–794 (1975).

    Article  Google Scholar 

  49. D. Stöffler, R. Ostertag, C. Jammes, and G. Pfannschmidt, “Shock metamorphism and petrology of the Shergotty achondrite,” Geochim. Cosmochim. Acta 50, 889–903 (1986).

    Article  Google Scholar 

  50. M. A. Sosnovskaya and L. I. Nerovich, “Petrographic and petrochemical characterization of gneisses and granitoids framing the Jarva–Varaka massif,” Proc. 17th Fersman Scientific Session of the GI KSC RAS (Apatity, 2020), pp. 515–519 [in Russian].

  51. J. S. Stasey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two–stage model,” Earth Planet. Sci. Lett. 26 (2), 207–221 (1975).

    Article  Google Scholar 

  52. R. H. Jager and E. Steiger, “Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology,” Earth Planet. Sci. Lett 36 (3), 359–362 (1977).

    Article  Google Scholar 

  53. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  54. S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, 1985).

    Google Scholar 

  55. C. A. Trepmann and J. G. Spray, “Shock-induced crystal-plastic deformation and post–shock annealing of quartz: microstructural evidence from crystalline target rocks of the Charlevoix impact structure, Canada,” Eur. J. Mineral. 18, 161–173(2006).

    Article  Google Scholar 

  56. L. P. Wager and G. Brown, Layered Igneous Rocks (Oliver and Boyd, Edinburgh, 1968).

    Google Scholar 

  57. D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  58. H. G. Wilshire, “Pseudotachylite from the Vredefort Ring, South Africa,” J. Geol. 79 (2), 195–206 (1971).

    Article  Google Scholar 

  59. A. Wittmann, T. Kenkmann, R. T. Schmitt, and D. Stöffler, “Shock–metamorphosed zircon in terrestrial impact craters,” Meteorit. Planet. Sci. 41 (3), 433–454 (2006).

    Article  Google Scholar 

  60. S.-H. Yang, E. Hanski, C. Li, W. D. Maier, H. Huhma, A. V. Mokrushin, R. Latypov, Y. Lahaye, and H. O’Brien, “Mantle source of the 2.44–2.50 Ga mantle plume–related magmatism in the Fennoscandian Shield: Evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions,” Mineral. Deposita 51, 1055–1073 (2016).

    Article  Google Scholar 

  61. V. G. Zagorodny, A. A. Predovsky, and A. A. et al. Basalaev, The Imandra–Varzuga Zone of the Karelides. Geology, Geochemistry, Development History (Nauka, Leningrad, 1982) [in Russian].

Download references

ACKNOWLEDGMENTS

The authors greatly apprecciate the help and valuable advices from M.V. Naumov, N.P. Vinogradova, and L.I. Konstantinova. The authors are also very grateful to V.V. Balagansky and the anonymous reviewer, for their considerate reading of the manuscript and numerous insightful comments.

Funding

This work was carried out within the framework of the state assignment No. AAAA-A19-119100290148-4, FMEZ-2022-0025.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Nerovich or T. V. Kaulina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerovich, L.I., Kaulina, T.V., Bayanova, T.B. et al. Granophyre Norites and Diorites of the Jarva-Varaka Massif (Monchegorsk Ore Area, Kola Region, Russia): Geology, Petrography, Geochemistry, Geochronology and Origin. Geochem. Int. 61, 572–592 (2023). https://doi.org/10.1134/S0016702923060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923060071

Keywords:

Navigation