Skip to main content
Log in

Elemental Composition of the Lemnaceae Family in Urbanized Territories of the Russian Federation

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents the first ever data on the contents of 28 elements in aquatic plants of the duckweed family (Lemnaceae) in the territory of 65 population centers of the Russian Federation. Data are presented on the elemental composition of duckweed in the urbanized regions of Russia and on the spatial distribution of the studied elements and their calculated concentration coefficients relative to the estimated mean values in the macrophytes. The elemental composition of duckweed is shown to provide significant information about the current ecological and geochemical situation in the study area and can serve as an unbiased indicator of the impact of anthropogenic and natural factors on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. V. A. Alekseenko and A. V. Alekseenko, Chemical Elements in Geochemical Systems. Soil Clarkes of Celibate Landscapes (Izdatelstvo Yuzhnogo Federalnogo Univ., Rostov-on-Don, 2013) [in Russian].

    Google Scholar 

  2. S. I. Arbuzov, V. S. Mashenkin, V. I. Rybalko, and A. F. Sudyko, “Rare-metal potential of coals of Northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia),” Geol. Mineral.-Syrev. Resurs. Sibiri, No. 3, 32–36 (2014).

    Google Scholar 

  3. E. Basiglini, M. Pintore, and C. Forni, “Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.),” Ecotoxicol. Environ. Saf. 153, 54–59 (2018).

    Article  Google Scholar 

  4. H. Bocuk, A. Yakar, and O. C. Turker, “Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent,” Ecol. Indic. 29, 538–548 (2013).

    Article  Google Scholar 

  5. N. Borisjuk1, A. A. Peterson, J. Lv, G. Qu, Q. Luo, L. Shi, G. Chen, O. Kishchenko, Y. Zhou, and J. Shi, “Structural and biochemical properties of duckweed surface cuticle,” Front. Chem. 6, 317–324 (2018).

  6. B. K. Brunovskii and K. G. Kunasheva, “Radium content in some plants,” Dokl. Akad. Nauk SSSR 20, 537–540 (1930).

    Google Scholar 

  7. S. Ceschin, M. Crescenzi, and M. A. Iannelli, “Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters,” Environ. Sci. Pollut. Res. 27, 1–9 (2020).

    Article  Google Scholar 

  8. M. Chytry, K. Sumberova, P. Hajkova, M. Hajek, Z. Hroudova, and J. Navratilova, Vegetace České Republiky 3. Vodní a Mokřadní Vegetace (Academia, Praha, 2011).

    Google Scholar 

  9. N. M. Daineko, S. F. Timofeev, and S. V. Zhadko, “Accumulation of heavy metals in coastal–aquatic plant of basins in the vicinity of the Zhlobina town, Gomel oblast, Republic of Belarus,” Izv. Tomsk. Politekhn. Univ. Inzh. Georesurs., No. 5, 124–132 (2016).

  10. A. O. Ekperusi, F. D. Sikoki, and E. O. Nwachukwu, “Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective,” Chemosphere 223, 285–309 (2019).

    Article  Google Scholar 

  11. V. V. Ermakov and Y. V. Kovalsky, “Living matter of the biosphere: mass and chemical elemental composition,” Geochem. Int. 56 (10), 969–981 (2018).

    Article  Google Scholar 

  12. V. V. Ermakov, N. S. Petrunina, S. F. Tyutikov, V. N. Khushvakhtova S.D. Danilova, A. P. Degtyarev, and E. V. Krechetova, “Concentration of metals by plants of the genus Salix and their implica tion in detection of cadmium anomalies,” Geochem. Int. 53 (11), 951–963 (2015).

    Article  Google Scholar 

  13. D. R. Farias, C. L. Hurd, R. S. Eriksen, and C. K. Macleod, “Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments,” Mar. Pollut. Bull. 128, 175–184 (2018).

    Article  Google Scholar 

  14. N. F. Glazovskii, Anthropogenic Fluxes of Matter in Biosphere. Mineral Mining and Geochemistry of Natural Ecosystems (Nauka, Moscow, 1982), pp. 7–28 [in Russian].

    Google Scholar 

  15. K. E. Gula, L. T. Krupskaya, A. M. Derbentseva, and N. G. Volobueva, “Use of aquatic plants in purification of seawages of gold of the gold producing mills,” Probl. Regional. Ekol., No. 5, 144–147 (2012).

  16. A. I. Ivanova, G. A. Lazareva, and N. V. Kuznetsova, “Assessment of water quality of the Volgusha River based on macrophytes,” Vestn. Mezhdunar. Univ. Prirody, O-va i Cheloveka “Dubna” 39 (2), 9–15 (2018).

  17. O. A. Kapitonova, “Materials to the biology and ecology of duckweed family (Lemnaceae) of Siberia,” Probl. Botaniki Yuzhn. Sibiri Mongolii 1 (18), 127–131 (2019).

    Google Scholar 

  18. A. A. Kokovkin, “The youngest structure of the Sikhote-Alin orogen, metallogeny of Sikhote-Alin ore province,” Regional. Geol. Metallogen. 53, 105–113 (2013).

    Google Scholar 

  19. N. E. Kolomiets, I. A. Tueva, O. A. Maltseva, S. E. Dmitruk, and G. I. Kalinkina, “Assessment of prospects of some species of herbal medicinal product from the point of view of their ecological purification,” Khim. Rast. Syrya, no. 4, 25–28 (2004).

  20. Yu. V. Kolubaeva, “Khimicheskii sostav podzemnykh vod zony aktivnogo vodoobmena territorii severnoi chasti Kolyvan-Tomskoi skladchatoi zony,” Vestn. Tomsk. Gos. Univ. 391, 202–208 (2015).

    Google Scholar 

  21. E. Landolt and R. Kandeler, Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: The Family of Lemnaceae–a Monographic Study, Vol. 2. Phytochemistry, Physiology, Application, Bibliography (Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel, 1987).

  22. P. S. Lapin and V. V. Olenchenko, “Manifestation of intrusive bodies in the modern topography of the Earth’s surface of the Kolyvan-Tomsk fold zone,” Interekspo Geo-Sibir 2 (3), 176–183 (2018).

    Google Scholar 

  23. M. Mkandawire, J. A. Teixeira, and E. G. Dudel, “The Lemna bioassay: contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology,” Crit. Rev. Environ. Sci. Technol. 44 (2), 154–197 (2014).

    Article  Google Scholar 

  24. T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: Limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).

    Article  Google Scholar 

  25. S. Oyedeji, P. O. Fatoba, C. O. Ogunkunle, and G. M. Akanbi, “Water hyacinth and duckweed as indicator of heavy metal pollution in River Asa,” J. Ind. Pollut. Control. 29 (2), 155–162 (2013).

    Google Scholar 

  26. Yu. V. Pavlenko and O. A. Polyakov, “Eastern Transbaikalian stibium province,” Vestn. Zabaikal’sk. Gos. Univ., (9), 77–84 (2010).

  27. G. V. Polyakov, A. E. Izokh, and A. P. Krivenko, “Platiniferous ultramafic-mafic assemblages of mobile belts in central and southeastern Asia,” Russ. Geol. Geophys. 47 (12), 1201–1216 (2006).

    Google Scholar 

  28. M. N. Prasad, M. Greger, and P. Aravind, “Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation,” Trace Elements in the Environment (CRC Press, Boca Raton, 2005), pp. 469–500 (2005).

    Book  Google Scholar 

  29. L. P. Rikhvanov, N. V. Baranovskaya, A. V. Volostnov, T. A. Arkhangelskaya, A. M. Mezhibor, V. V. Berchuk, A. Yu. Ivanov, A. V. Talovskaya, E. G. Shatilova, and E. G. Yazikov, “Radioactive elements in the environment,” Izv. Tomsk. Politekhn. Univ. Inzh. Geores. 311 (1), 128–136 (2007).

    Google Scholar 

  30. J. R. Rofkar, D. F. Dwyer, and D. M. Bobak, “Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor,” Int. J. Phytoremediation 16 (2), 155–166 (2014).

    Article  Google Scholar 

  31. V. N. Ryabova and V. A. Vasileva, “Recovery of plants of recultivated ponds of the western branch of the feeder system of Petergof,” Vestn. St.-Petersb. Univ. 3 (3), 146–157 (2009).

    Google Scholar 

  32. M. Sasmaz, E. Obek, and A. Sasmaz, “Bioaccumulation of uranium and thorium by Lemna minor and Lemna gibba in Pb–Zn–Ag tailing water,” Bull. Environ. Contamin. Toxicol. 97 (6), 832–837 (2016).

    Article  Google Scholar 

  33. M. Sasmaz, E. Obek, and A. Sasmaz, “The accumulation of La, Ce and Y by Lemna minor and Lemna gibba in the Keban gallery water, Elazig, Turkey,” Water Environ. J. 32 (1), 75–83 (2018).

    Article  Google Scholar 

  34. T. S. Shakhova, A. V. Talovskaya, and E. G. Yazikov, “Ecological-geochemical features of snow cover (solid phase) in the distribution area of oil refining factories (Omsk, Achinsk, Pavlodar),” Vopr. Estestvozn. 4, 125–130 (2018).

    Google Scholar 

  35. C. C. Teles, R. A. Mohedano, G. Tonon, Filho P. Belli, and R. H.R. Costa, “Ecology of duckweed ponds used for wastewater treatment,” Water Sci. Technol. 75 (12), 2926–2934 (2017).

    Article  Google Scholar 

  36. P. A. Udodov, P. N. Parshin, B. M. Levasheva, A. A. Lukin, N. M. Rasskazov, Yu. G. Kopylova, E. S. Korobeinikova, R. S. Solodovnikova, A. D. Fateev, and B. I. Shestakov, Hydrogeochemical Studies of the Kolyvan–Tomsk Fold Zone (Tomsk. Univ., Tomsk, 1971) [in Russian].

    Google Scholar 

  37. M. D. Ufimtseva, “The patterns in accumulation of chemical elements by higher plants and their responses in biogeochemical provinces,” Geochem. Int. 53 (5), 441–455 (2015).

    Article  Google Scholar 

  38. M. Varga, J. Horvatić, and A. Čelić, “Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium,” Central Europ. J. Biol. 8 (11), 1083–1093 (2013).

    Google Scholar 

  39. V. I. Vernadskii and A. P. Vinogradov, “On the chemical elementary composition of duckweed as species feature,” Dokl. Akad. Nauk SSSR, no. 9, 473–476 (1931).

  40. G. Wiegleb, “Der soziologische konnex der 47 häufigsten makrophyten der gewässer mitteleuropas,” Vegetatio. 38 (3), 165–174 (1978).

    Article  Google Scholar 

  41. O. M. Yanchenko, V. G. Voroshilov, T. V. Timkin, I. V. Martynenko, and Z. Mansur, “Morphology and composition of gold of the weathering crust of the Tom-Yaia interfluve,” Izv. Tomsk. Politekhn. Univ. Inzh. Geores. 330 (3), 84–92 (2019).

    Google Scholar 

  42. D. V. Yusupov, L. P. Rikhvanov, A. F. Sudyko, N. V. Baranovskaya, and L. A. Dorokhova, Radioactive elements (thorium, ursnium) in the popple leaves on the urbanized territories and their indicator role,” Razved. Okhr. Nedr, No. 2, 61–68.

  43. A. N. Zlobina, L. P. Rikhvanov, N. V. Baranovskaya, I. M. Farkhutdinov, and V. Nanping, “Radioecological hazard for population in the development areas of highly radioactive granites,” Izv. Tomsk. Politekhn. Univ. Inzh. Geores. 330 (3), 111–125 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. L.P. Rikhvanov for valuable recommendations. Materials for this study were collected thanks to help and assistance provided by N. Stryuk (Voronezh), D.R. Karimov (Bor), A.V. Tarasov (Kolomna), K. Fedosova (Moscow), A.A. Zorina (Kirovo-Chepetsk), D.S. Denisova (Orel), F. Marushchak (Moscow), E.A. Monakhova (Omsk), N.V. Torgovkin (Yakutsk), A.O. and O.V. Soroka (Taishet), A.A. Shilenina (Biisk), N.A. Shangin (St. Petersburg), E.E. Mikhailova (Yekaterinburg), P.S. Shatiaf (Partizansk), A. Kondrat’eva (Pskov), E.A. Mikhant’ev (Novosibirsk), Z.V. Dzutsev (Vladikavkaz), A.G. Vorob’eva (Vladimir), O.V. Martynova and her disciples (Mosal’sk), and many others.

Funding

This study was supported by the Russian Science Foundation, project 20-64-47021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Baranovskaya, A. Yu. Baranovskaya or A. F. Sudyko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskaya, N.V., Baranovskaya, A.Y. & Sudyko, A.F. Elemental Composition of the Lemnaceae Family in Urbanized Territories of the Russian Federation. Geochem. Int. 61, 658–667 (2023). https://doi.org/10.1134/S001670292304002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292304002X

Keywords:

Navigation