Skip to main content
Log in

Bioaccumulation of Uranium and Thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag Tailing Water

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study focused on the ability of Lemna minor and Lemna gibba to remove U and Th in the tailing water of Keban, Turkey. These plants were placed in tailing water and individually fed to the reactors designed for these plants. Water and plant samples were collected daily from the mining area. The plants were ashed at 300°C for 1 day and analyzed by ICP-MS for U and Th. U was accumulated as a function of time by these plants, and performances between 110 % and 483 % for L. gibba, and between 218 % and 1194 % for L. minor, were shown. The highest Th accumulations in L. minor and L. gibba were observed at 300 % and 600 % performances, respectively, on the second day of the experiment. This study indicated that both L. gibba and L. minor demonstrated a high ability to remove U and Th from tailing water polluted by trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akgul B (2015) Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban–Elazig area, East Anatolia, Turkey. J Afr Earth Sci 111:222–230

    Article  CAS  Google Scholar 

  • ATSDR (2013) Agency for toxic substances and disease registry. A toxicological profile for uranium. U.S. Department of Health and Human Services. Public Health Service pp. 1–526

  • Babarinde A, Onyiaocha GO (2016) Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics. Chem Int 2:37–46

    Google Scholar 

  • Babarinde A, Ogundipe K, Sangosanya KT, Akintola BD, Elizabeth Hassan AO (2016) Comparative study on the biosorption of Pb(II), Cd(II) and Zn(II) using Lemon grass (Cymbopogon citratus): kinetics, isotherms and thermodynamics. Chem Int 2:89–102

    Google Scholar 

  • Bhalara P, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium (VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  CAS  Google Scholar 

  • Bocuk H, Yakar A, Türker OC (2013) Assessment of Lemna gibba as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecol Indic 29:538–548

    Article  CAS  Google Scholar 

  • Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxic Environ Health Part B 7:297–317

    Article  CAS  Google Scholar 

  • Davis PH (1984) Flora of Turkey and East Eagen Islands, vol 8. University Press, Edinburgh

    Google Scholar 

  • Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf 74:48–54

    Article  CAS  Google Scholar 

  • Favas PJC, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 471:993–1002

    Article  Google Scholar 

  • Goswami C, Majumder A, Misra AK, Bandyopadhyay K (2014) Arsenic uptake by Lemna minor in hydroponic system. Int J Phytoremed 16:1221–1227

    Article  CAS  Google Scholar 

  • Iqbal M (2016) Vicia faba bioassay for environmental toxicity monitoring: a review. Chemosphere 144:785–802

    Article  CAS  Google Scholar 

  • Iqbal M, Khera RA (2015) Adsorption of copper and lead in single and binary metal system onto Fumaria indica biomass. Chem Int 1:157–163

    Google Scholar 

  • Jha VN, Tripathi RM, Sethy NK, Sahoo SK (2016) Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India. Sci Total Environ 539:175–184

    Article  CAS  Google Scholar 

  • Khalid A, Shabana ES, Almasoud FI (2004) Accumulation of uranium by filamentous green algae under natural environmental conditions. J Radioanal Nucl Chem 260(3):683–687

    Article  Google Scholar 

  • Khan S, Ahmad I, Shah M, Rehman MT, Khaliq SA (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457

    Article  CAS  Google Scholar 

  • Lottermoser BG (2003) Mine wastes—characterization, treatment and environ-MENTAL impacts. Springe, Berlin

    Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Materazzi S, Canepari S, Aquili S (2012) Monitoring heavy metal pollution by aquatic plants. Environ Sci Pollut Res 19:3292–3298

    Article  CAS  Google Scholar 

  • Matveyeva I, Jacimovic R, Planinsek P, Smodis B, Burkitbayev M (2016) Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan). Radiochim Acta 104/1:51–57

    Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57(8):997–1005

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba (duck-weed) in tailing water of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336 (1–3):81–88

    Article  CAS  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremed 6:347–362

    Article  CAS  Google Scholar 

  • Obek E (2009) Bioaccumulation of heavy metals from the secondary treated municipal waste water by Lemna gibba. Fresenius Environ Bull 18 (11a):2159–2164

    CAS  Google Scholar 

  • Obek E, Sasmaz A (2011) Bioaccumulation of aluminum by Lemna gibbafrom secondary treated municipal wastewater effluents. Bull Environ Contam Toxicol 86:217–220

    Article  CAS  Google Scholar 

  • Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57:4947–4955

    Article  CAS  Google Scholar 

  • Pratas J, Favas PJC, Paulo C, Rodrigues N, Prasad MNV (2012) Uranium accumulation by aquatic plants from uranium-contaminated water in Central Portugal. Int J Phytorem 14:221–234

    Article  CAS  Google Scholar 

  • Pratas J, Paulo C, Favas PJ, Venkatachalam P (2014) Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol Eng 69:170–176

    Article  Google Scholar 

  • Qureshi K, Ahmad M, Bhatti I, Iqbal M, Khan A (2015) Cytotoxicity reduction of wastewater treated by advanced oxidation process. Chem Int 1:53–59

    Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed Spirodela polyrhiza: a good option for phytoremediation. Chemosphere 69(3):493–499

    Article  CAS  Google Scholar 

  • Rofkar JR, Dwyer DF, Bobak DM (2014) Uptake and toxicity of arsenic, copper and silicon in Azolla carolinniana and Lemna minor. Int J Phytoremed 16:155–166

    Article  CAS  Google Scholar 

  • Sasmaz A, Obek E (2009) The accumulation of arsenic, uranium, and boron in Lemna gibba exposed to secondary effluents. Ecol Eng 35:1564–1567

    Article  Google Scholar 

  • Sasmaz A, Obek E (2012) The accumulation of silver and gold in Lemna gibba exposed to secondary effluents. Chem Erde Geochem 72 (2):149–152

    Article  CAS  Google Scholar 

  • Sasmaz A, Yaman M (2008) Determination of uranium and thorium in soil and plant parts around abandoned Pb-Zn-Cu mining area. Commun Soil Sci Plant Anal 39:2568–2583

    Article  CAS  Google Scholar 

  • Sasmaz M, Topal EIA, Obek E, Sasmaz A (2015) The potential of Lemna gibba and Lemna minor to remove Cu, Pb, Zn, and As in tailing wastewater in a mining area in Keban. Turkey. J Environ Manag 163:246–253

    Article  CAS  Google Scholar 

  • Sasmaz A, Dogan IM, Sasmaz M (2016) Removal of Cr, Ni, and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L.. Water Environ J. doi:10.1111/wej.12185

    Google Scholar 

  • Seeliger TC, Pernicka E, Wagner GA, Begemann E, Schimitt-Strecker S, Eibner C, Oztunali O, Baranyi I (1985) Archaeometry of underground mining works of North and East Anatolia, Turkey. In: Jahrbuch des Romisch Germanischen Zentralmuseums. Romisch Germanischen Zentralmuseums, Mainz, p 597–659

    Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317

    Article  CAS  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  Google Scholar 

  • Srivastava J, Gupta A, Chandra H (2008) Managing water quality with aquatic macrophytes. Rev Environ Sci Biotechnol 7:255–266

    Article  CAS  Google Scholar 

  • Tatar SY, Obek E (2014) Potential of Lemna gibba and Lemna minor for accumulation of boron from secondary effluents. Ecol Eng 70:332–336

    Article  Google Scholar 

  • USEPA (2001) A citizens guide to phytoremediation. Technical report. Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (2002) EPA facts about thorium. United States Environmental Protection Agency, Washington

    Google Scholar 

  • Wang J, Hu X, Wang J, Bao Z, Xie S, Yang J (2010) The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) on to R. arrihizus. Biochem Eng J 51:19–23

    Article  Google Scholar 

  • Wang D, Zhou S, Liu L, Du L, Wang J, Huang Z, Ma L, Ding S, Zhang D, Wang R, Jin Y, Xia C (2015) The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. Foliosa. Environ Sci Pollut Res 22 (9):6941–6949

    Article  CAS  Google Scholar 

  • WHO (2001) Depleted uranium, sources, exposure and health effects. WHO, Geneva

    Google Scholar 

  • WHO (2005) Uranium in drinking-water. Background document for development of WHO guidelines for drinking-water quality. Elsevier, Amsterdam, p 18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Sasmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmaz, M., Obek, E. & Sasmaz, A. Bioaccumulation of Uranium and Thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag Tailing Water. Bull Environ Contam Toxicol 97, 832–837 (2016). https://doi.org/10.1007/s00128-016-1929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1929-x

Keywords

Navigation