Skip to main content
Log in

Geochemistry and Formation Conditions of Milk-White Quartz Veins in the Maksyutovo Metamorphic Complex, Southern Urals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Milk-white vein quartz from the Novotroitskoe deposit was studied using inductively coupled plasma atomic emission spectrometry of bulk samples (ICP-OES), grain laser ablation (LA-ICP-MS), electron paramagnetic resonance (EPR) spectroscopy, (IR), and Fourier-transform infrared (FTIR) spectroscopy; and microthermometric data were acquired on the fluid inclusions hosted in this quartz. It is shown that the veins were formed at temperatures of 360–120°C by K- and Na-rich aqueous chloride fluid with a wide range of salinity values (0.9–9.3 wt % NaCl-equiv.). The gross content (ICP-OES) of Al, the dominant admixture in the vein quartz, is in the range of 25–400 ppm, whereas local determinations (LA-ICP-MS) give a range of 11–180 ppm, and the structural form accounts, according to EPR and IR data, for 6–12 ppm. Comparison of analytical data on the Ge admixture in the bulk samples and in spot EPR determinations showed that Ge is contained by the quartz mostly in the form of an isomorphic component, in contrast to Ti, which is hosted mostly as mineral inclusions of titanite. It has been established that the main petrogenetically informative elements in quartz (K, Na, Mg, Mn, Fe, Ca, and Li) belong to a nonstructural form and are contained as mineral and fluid inclusions. High contents of alkalis (ICP-OES and LA-ICP-MS data), molecular H2O, and CO2 (FTIR spectroscopy) are typical of veins of hydrothermal origin with a high content of fluid inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. N. Anfilogov, L. Ya. Kabanova, M. A. Igumentseva, and N. K. Nikandrova, “Geological structure and genesis of quartz veins in the Ufalei Complex exemplified by the Vein 2136,” Dokl. Earth Sci. 466 (4), 109–113 (2016).

    Article  Google Scholar 

  2. I. A. Baksheev, V. Yu. Prokofev, and V. I. Ustinov, “Conditions of formation of vein quartz of the Berezovsk gold field (Middle Urals): evidence from fluid inclusions and isotope data,” Proc. Uralian Summer Mineralogical School–98, Yekaterinburg, Russia, 1998 (UGGGA Yekaterinburg, 1998), pp. 41–49.

  3. B. C. Balitskii, M. I. Samoilovich, A. I. Novozhilov, et al., “Influence of temperature conditions of quartz formation on the content of structural aluminum impurity,” Min. Sb. L’vovsk. Univ. 3 (20), 430–439 (1966).

    Google Scholar 

  4. R. J. Beane and M. Leech, “The Maksyutov Complex: the first UHP terrane 40 years later, Geol. Soc. Am. Spec. Pap. 419, 153–169 (2007).

    Google Scholar 

  5. R. J. Bodnar and M. O. Vityk, “Interpretation of microthermometric data for H2O–NaCl fluid inclusions,” Fluid Inclusions in Minerals: Methods and Applications, (Virginia Polytechnic Institute and State University, Pontignana-Siena, 1994), pp. 117–130.

  6. A. S. Borisenko, “Cryometric study of salt composition of solutions of gas—liquid inclusions in minerals,” Geol. Geofiz., No. 8, 16–28 (1977).

  7. A. A. Evstropov, Yu. I. Buryan, N. S. Kukhar, N. M. Serykh, and S. S. Tsyutskii, Vein Quartz of the Urals in Techniques. Geology of Main Deposits of Quartz Raw Material (Nedra, Moscow, 1995) [in Russian].

    Google Scholar 

  8. B. G. Golionko and A. V. Ryazantsev, “Deformations and sequence of formation of structures of the northern part of the Maksyutov metamorphic complex, South Urals,” Izv. Vyssh. Ucheb. Zaved. Geol. Razved., no. 1, 17–26 (2018).

  9. J. Götze, Y. Pan, A. Müller, E. L. Kotova, and D. Cerin, “Trace element compositions and defect structures of high–purity quartz from the Southern Ural region, Russia,” Minerals. 7 (10) (2017).

  10. J. Götze, M. Plötze, T. Graupner, D. K. Hallbauer, and C. Bray, “Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillaryion analysis and gas chromatography,” Geochim. Cosmochim. Acta 68, 3741–3759 (2004).

    Article  Google Scholar 

  11. R. Hetzel, “Geology and geodynamic evolution of the high-P/low-T Maksyutov Complex, southern Urals, Russia,” Geol. Rundsch. 87, 577–588 (1999).

    Article  Google Scholar 

  12. R. Huang and A. Audétat, “The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration,” Geochim. Cosmochim. Acta. 84, 75–89 (2012).

    Article  Google Scholar 

  13. M. A. Igumentseva, V. G. Kuzmin, V. N. Anfilogov, L. Ya. Kabanova, V. M. Ryzhkov, M. V. Shtenberg, and R. T. Zainullina, “Quartz of Vein # 175 of the Kyshtym granulated quartz deposit (South Urals) as the reference for estimation of quality of quartz raw material, Razved. Okhr. Nedr, no. 5, 48–53 (2018).

  14. V. A. Isaev, “Structiral impurities in quartz. Part I. An overview and analysis of tranditional ways of quartz purification from structural impurities,” Gorn. Inform.-Analit. Byull., No. 9, 11–23 (2006).

  15. K. S. Ivanov, “Main problems of the geological evolution and structure of the Urals,” Ural’sk. Geol. Zh. 2 (128), 3–54 (2019).

    Google Scholar 

  16. Yu. V. Kazantsev and T. T. Kazantseva, Fundamental Problems of Geology of the South Urals (Gilem, Ufa, 2016) [in Russian]. G. A. Keilman, Migmatite Complexes of Mobile Belts (Nedra, Moscow, 1974) [in Russian].

  17. M. A. Korekina, V. P. Lyutoev, S. N. Shanina, and M. V. Shtenberg, “Trace-element composition of vein quartz of the Kuznechikha deposit (South Urals),” Obogashchenie Rud, No. 5, 23–29 (2020).

    Article  Google Scholar 

  18. E. N. Kotova, V. P. Lyutoev, and S. K. Kuznetsov, “Aluminum and germanium paramagnetic centers in vein quartz and rock crystal of the Subpolar Urals,” Zap. Ross. Mineral. O-va, No. 4, 71–81 (2007).

    Google Scholar 

  19. S. G. Kovalev, E. A. Timofeeva, and E. O. Pindyurina, “Geochemistry of the eclogites of the Maksyutov complex, South Urals, and genetic nature of their protoliths,” Geochem. Int. 53 (4), 285–311 (2015).

    Article  Google Scholar 

  20. D. D. Krinitskii and V. M. Krinitskaya, Geological Structure of the Area of the Middle Reaches of the Sakmara River. Report of the Mikhailovskaya GSP on the Geological Survey on a Scale 1 : 50000 for 1961–62 (Ufa, PGO Bashkirgeologiya, 1963).

    Google Scholar 

  21. D. D. Krinitskii and V. M. Krinitskaya, “Discovery of Silurian deposits among ancient sequences of the Ural-Tau Range slope, South Bashkiria,” Geology and Mineral Resources of the South Urals (Nedra, Moscow, 1965), Vol. 4, 37–39 (1965).

  22. S. K. Kuznetsov, V. P. Lyutoev, S. N. Shanina, E. N. Svetova, and N. V. Sokerina, “Quality pf vein quartz from Uralian deposits,” Izv. Komi Nauchn. Ts. UrO RAS 4 (8), 65–72 (2011).

    Google Scholar 

  23. M. L. Leech and W. G. Ernst, “Petrotectonic evolution of the high- to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains, Russia: structural and oxygen isotopic constraints,” Lithos 52, 235–252 (2000).

    Article  Google Scholar 

  24. V. I. Lennykh, “Petrography, metamorphism, and absolute age of rocks of the Maksyutov Complex,” in Magmatism, Metamorphism, and Metallogeny of the Urals. Proc. 1rst Ural. Petrograf. Conf., Sverdlovsk, Russia, 1963 (UFAN SSSR, Sverdlovsk, 1963), Vol. 3, 245–255.

  25. V. I. Lennykh, “Pre-Paleozoic ophiolites. Maksyutov Complex,” A Guidebook to the Field Geological Routes on the South Urals (UNTs AN SSSR, 1985), pp. 8–32 [in Russian].

  26. V. N. Lodochnikov, Major Rock-Forming Minerals (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  27. H. Longerich, D. Günther, and S. Jackson, “Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry,” Fresenius J. Anal. Chem. 355 (5), 538–542 (1996).

    Article  Google Scholar 

  28. V. P. Lutoev, “Deconvolution of powder ESR spectra: Ge centers in natural quartz,” Appl. Magn. Reson. 33, 19–35 (2008).

    Article  Google Scholar 

  29. V. P. Lyutoev and A. B. Makeev, “Structural impurities of elements in quartz of sandstones of the Pizhemsky depression (Middle Timan),” Litosfera 4, 110–120 (2013).

    Google Scholar 

  30. V. P. Lyutoev, A. B. Makeev, E. N. Terekhov, and A. Yu. Lysyuk, “Spectroscopy of quartz-bearing rocks of the Bolshoi Tyuters Island,” Izv. Vyssh. Ucheb. Zaved. Geol. Razved., No. 3, 19–27 (2016).

  31. A. S. Marfunin, Spectroscopy, Luminescence, and Radiation Centers in Minerals (Nedra, Moscow, 1975) [in Russian].

    Google Scholar 

  32. R. Mockel and J. Götze, Quartz: Deposits, Mineralogy and Analytics (Springer, New York, 2012).

    Google Scholar 

  33. G. Moore, A. Chizmeshya, and P. F. McMillan, “Calibration of a reflectance FTIR method for determination of dissolved CO2 concentration in rhyolitic glasses,” Geochim. Cosmochim. Acta. 64 (20), 3571–3579 (2000).

    Article  Google Scholar 

  34. N. K. Nikandrova, V. N. Anfilogov, M. A. Igumentseva, and L. Ya. Kabanova, “Homogenization temperatures and the composition of gas–liquid inclusions from the Gora Khrustal’naya deposit (Middle Urals),” Dokl. Earth Sci. 456 (1), 554–557 (2014).

    Article  Google Scholar 

  35. S. G. Panyak, A. B. Makarov, and G. I. Strashnenko, “Geological structure and conditions of formation of the Novotroitsk high-quality quartz deposit,” Izv. Uralsk. Gos. Gorn. Univ., no. 13, 136–139 (2001).

  36. C. Paton, J. Hellstrom, B. Paul, J. Woodhead, and J. Hergt, “Iolite: Freeware for the visualisation and processing of mass spectrometric data,” J. Anal. Atomic Spectroscop. 26, 2508–2518 (2011).

    Article  Google Scholar 

  37. Yu. A. Polenov, V. N. Ogorodnikov, V. N. Sazonov, and A. N. Savichev, “Compound quartz veins,” Vestn. Ural’sk. Otd. Ross. Mineral. O-va, no. 7, 122–130 (2010).

  38. Yu. A. Polenov, V. N. Ogorodnikov, and A. N. Savichev, “Rare-earth elements in quartz veins of the Urals and their indicator role,” Litosfera, No. 2, 105–119 (2013).

    Google Scholar 

  39. V. N. Puchkov, Geology of the Urals and Cis-Urals (Actual Questions of Stratigraphy, Tectonics, Geodynamics, and Metallogeny), (DizainPoligrafServis, Ufa, 2010) [in Russian].

  40. L. T. Rakov, “General aspects of the formation of structural defects in quartz,” Geochem. Int. 43 (11), 1098–1107 (2005).

    Google Scholar 

  41. L. T. Rakov, “Mechanisms of isomorphic substitution in quartz,” Geochem. Int. 44 (10), 1004–1014 (2006).

    Article  Google Scholar 

  42. L. T. Rakov, “Mechanisms of isomorphism in quartz,” Geokhimiya, no. 10, 1085–1096 (2006).

  43. L. T. Rakov, N. D. Milovidova, and B. M. Moiseev, Express EPR Determination of Isomorphic Impurities in Samples of Quartz Raw Material (VIMS, Moscow, 1991) [in Russian].

    Google Scholar 

  44. L. T. Rakov, N. D. Milovidova, B. M. Moiseev, and V. G. Ogurtsov, “A new method for assessment of quality of quartz raw materials,” Razved. Okhr. Nedr, No. 7, 36–38 (1993).

    Google Scholar 

  45. S. A. Repina, Zhelannoe Deposit of Vein Quartz and Rock Crystal (URO RAN, Yekaterinburg, 2016) [in Russian].

    Google Scholar 

  46. N. M. Serykh, L. I. Borisov, E. N. Gulin, and A. D. Kairyak, “Prospects of the use of MRB of quartz raw material of Russia and high-rechnology industry,” Razved. Okhr. Nedr, No. 1, 17–20 (2003).

    Google Scholar 

  47. Yu. A. Shatnov, “Potential of extrapure quartz in the Sakmara area,” Razved. Okhr. Nedr, No. 3, 10–11 (1999).

    Google Scholar 

  48. M. V. Shtenberg, “Water and water-bearing groups in vein quartz from the Uralian quartz raw material deposits,” Litosfera, No. 3, 102–111 (2014).

    Google Scholar 

  49. M. V. Shtenberg, M. A. Igumentseva, and V. N. Bykov, “Infra-Red Fourier spectroscopy of water and N-defects in the granulated quartz of the Kuznechikha deposit (S. Urals),” Litosfera, No. 4, 152–156 (2010).

    Google Scholar 

  50. J. B. Thomas, E. B. Watson, F. S. Spear, P. T. Shemella, S. K. Nayak, and A. Lanzirotti, “TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz,” Contrib. Mineral. Petrol. 160 (5), 743–759 (2010).

    Article  Google Scholar 

  51. S. V. Vyatkin and D. G. Koshchug, “Annealing kinetics of Ti- and Ge-related centers in quartz,” Appl. Magn. Reson. 51, 349–362 (2020).

    Article  Google Scholar 

  52. D. A. Wark and B. E. Watson, “TitaniQ: A titanium in quartz geothermometer,” Contrib. Mineral. Petrol. 152, 743–754 (2006).

    Article  Google Scholar 

  53. J. A. Weil, “A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz,” Phys. Chem. Miner. Miner. 10 (1), 149–165 (1984).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.K. Nikandrova and L.Ya. Kabanova for help with the analytical work.

Funding

This study was conducted with the use of equipment installed at the Southern Ural Center of Collective Use of Equipment for Studying Mineral Materials, Southern Ural Federal Research Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences, and the Geonauka Center of Collective Use of Research Equipment, Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences. The study was supported by government-financed research projects 075-00880-22 PR and 1021062211108-5-1.5.2

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Korekina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korekina, M.A., Lyutoev, V.P., Artemyev, D.A. et al. Geochemistry and Formation Conditions of Milk-White Quartz Veins in the Maksyutovo Metamorphic Complex, Southern Urals. Geochem. Int. 60, 1122–1135 (2022). https://doi.org/10.1134/S0016702922110040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922110040

Keywords:

Navigation