Skip to main content
Log in

Lead Isotope Systematics of the Orogenic Gold Deposits of the Baikal-Muya Belt (Northern Transbaikalia): Contribution of the Subcontinental Lithospheric Mantle in Their Genesis

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Orogenic gold deposits associated with metamorphic orogenic fold belts are the major sources of gold currently being mined in the world. The role of metamorphic and magmatic processes and crustal and mantle sources in the gold mineralization genesis are of much debate. The formation of orogenic gold deposit in Precambrian metamorphic belts is usually described by а metamorphic devolatilization model. Some of the orogenic deposits, however, are proved to be much younger than the peak of regional metamorphism. Geological features of these deposits suggest close relation of their gold-forming systems with deeper lithospheric processes. The Baikal-Muya Belt (BMB) of the Central Asian Orogenic Belt is an example of such a region. The BMB comprises ca. 20 orogenic gold deposits and occurrences of Permian age. Gold mineralization at the deposits is usually located in quartz lodes situated in the vicinity of fault zones in association with Late Paleozoic sub-alkaline and alkaline basic and acid intrusions. Using high-precision (0.02–0.03%, 2SD) MC-ICP-MS method, we studied in detail Pb isotopic composition of the Permian gold-bearing mineralization at six BMB deposits, as well as metamorphic and igneous rocks of Tonian to Permian age. The 46 studied sulfide samples representing BMB gold-bearing lodes are highly variable regarding their Pb isotopic composition: 206Pb/204Pb from 16.628 to 18.293, 207Pb/204Pb from 15.325 to 15.614, and 208Pb/204Pb 36.742 to 38.384. Individual Permian orogenic gold deposits and occurrences differ in Pb isotope ratios and degree of their Pb isotopic composition heterogeneity. The Pb isotope features weakly correlate with the geological setting of the deposits. Age-corrected Pb–Pb data for the 41 samples of the BMB metamorphic and igneous rocks are similar to those of the gold mineralization: 206Pb/204Pb from 16.89 to 18.57, 207Pb/204Pb from 15.34 to 15.65, and 208Pb/204Pb 36.67 to 38.4. The high variability of model parameters (µ2 = 9.02–9.78, ω2 = 35.2–42.5, Th/U = 3.84–4.46) and Pb-isotope mixing trends for the ore lead suggest different sources of the metal. One of the sources was the BMB Neoproterozoic metamorphic and magmatic rocks hosting the gold deposits. The obtained data also suggest a common source for these deposits which is identical in its Pb-isotope characteristics to the Permian alkaline and sub-alkaline igneous rocks. We propose that the metasomatized subcontinental lithospheric mantle (SCLM) as well as the SCLM derived alkaline mafic magmas could be the important source of metals (including gold) for the Permian orogenic gold mineralization of the BMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. Ackerman, P. Spacek, T. Magna, J. Ulrych, M. Svojtka, E. Hegner, K. Balogh, “Alkaline and carbonate-rich melt metasomatism and melting of subcon-tinental lithospheric mantle: evidence from mantle xenoliths, NE Bavaria, Bo-hemian Massif”, J. Petrol. 54, 2597–2633 (2013).

    Article  Google Scholar 

  2. A. Aibai, X. H. Deng, F. Pirajno, S. Han, W. X. Liu, X. Li, X. Chen, Y. S. Wu, J. F.Liu, and Y. J. Chen, “Origin of ore-forming fluids of Tokuzbay gold deposit in the South Altai, northwest China: Constraints from Sr–Nd–Pb isotopes,” Ore Geol. Rev. 134, 104165 (2021). https://doi.org/10.1016/j.oregeorev.2021.104165

    Article  Google Scholar 

  3. M. Arima, and R. Kerrich, “Jurassic kimberlites from Picton and Varty Lake, Ontario: Geochemical and stable isotopic characteristics,” Contrib. Mineral. Petrol. 99, 385–391 (1988).

    Article  Google Scholar 

  4. F. P. Bierlein, and S. Pisarevsky, “Plume-related oceanic plateaus as a potential source of gold mineralization,” Econ. Geol. 103 (2), 425–430 (2008). https://doi.org/10.2113/gsecongeo.103.2.425

    Article  Google Scholar 

  5. M. Bettinelli, G.M. Beone, S. Spezia, and C. Baffi, “Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis,” Anal. Chim. Acta 424, 289–296 (2000). https://doi.org/10.1016/S0003-2670(00)01123-5

    Article  Google Scholar 

  6. D. B. Bondar, A. V. Chugaev, Yu. S. Polekhovsky, and N. N. Koshlyakova, “Ore minerology of the Kedrovskoe gold deposit (The Muysky District, Republic of Buryatia, Russia),” Moscow Univ. Geol. Bull. 3, 60–69 (2018). https://doi.org/10.33623/0579-9406-2018-3-60-69

    Article  Google Scholar 

  7. M. L. Borba, F. C. Junior, K. Kawashita, L. Takehara, M. Babinski, and M. Bruckman, “The Bajo de la Alumbrera and Agua Rica Cu–Au (Mo) porphyry deposits of Argentina: Genetic constraints on ore formation and sources based on isotope signatures,” Ore Geol. Rev. 75, 116–124 (2016). https://doi.org/10.1016/j.oregeorev.2015.12.010

    Article  Google Scholar 

  8. R. M. Bouse, J. Ruiz, S. R. Titley, R. M. Tosdal, J. L. Wooden, “Pb isotope compositions of Late Cretaceous and Early Tertiary igneous rocks and sulfide minerals in Arizona: implications for the sources of plutons and metals in porphyry copper deposits,” Econ. Geol. 94, 211–244 (1999). https://doi.org/10.2113/gsecongeo.94.2.211

    Article  Google Scholar 

  9. H. de Boorder, “Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they?” Ore Geol. Rev. 46, 1–31 (2012). https://doi.org/10.1016/j.oregeorev.2012.01.002

    Article  Google Scholar 

  10. V. A. Buryak, and Yu. I. Bakulin, Gold Metallogeny (Dal’nauka, Vladivostok, 1998) p.403 [in Russian].

    Google Scholar 

  11. I. V. Chernyshev, A. V. Chugaev, and K. N. Shatagin, “High-precision Pb isotope analysis by multicollector–ICP-mass-spectrometry using 205Tl/203Tl normalization: Optimization and calibration of the method for the studies of Pb isotope variations,” Geochem. Int. 45 (11), 1065–1076 (2007). https://doi.org/10.1134/S0016702907110018

    Article  Google Scholar 

  12. I. V. Chernyshev, A. V. Chugaev, Yu. G. Safonov, M. R. Saroyan, M. A. Yudovskaya, and A. V. Eremina, “Lead isotopic composition from data of high-precession MC–ICP–MS and sources of matter in the large-scale Sukhoi Log noble metal deposit, Russia,” Geol. Ore Deposits 51 (6), 496–504 (2009). https://doi.org/10.1134/S1075701509060063

    Article  Google Scholar 

  13. A. V. Chugaev and I. V. Chernyshev “Pb-Pb isotopic systematics of orogenic gold deposits of the Baikal–Patom fold belt (Northern Transbaikalia, Russia) and estimation of the role of neoproterozoic crust in their formation,” Geochem. Int. 55 (11), 1010–1021 (2017). https://doi.org/10.1134/S0016702917110040

    Article  Google Scholar 

  14. A. V. Chugaev, I. V. Chernyshev, V. A. Lebedev, and A. V. Eremina, “Lead isotope composition and origin of the quaternary lavas of Elbrus Volcano, the Greater Caucasus: high–precision MC–ICP–MS Data,” Petrology 21 (1), 16–27 (2013a). https://doi.org/10.1134/S0869591113010037

    Article  Google Scholar 

  15. A. V. Chugaev, I. V. Chernyshev, N. S. Bortnikov, V. A. Kovalenker, G. D. Kiseleva, and V. Yu. Prokof’ev, “Lead isotope ore provinces of Eastern Transbaikalia and their relationships to regional structures: results of high-precision MC–ICP–MS study of Pb isotopes,” Geol. Ore Deposits 55 (4), 245–255 (2013b). https://doi.org/10.1134/S107570151304003X

    Article  Google Scholar 

  16. A. V. Chugaev, O. Yu. Plotinskaya, I. V. Chernyshev, and A. A. Kotov, “Lead isotope heterogeneity in sulfides from different assemblages at the Verninskoe Gold Deposit (Baikal–Patom Highland, Russia),” Dokl. Earth Sci. 457, 887–892 (2014). https://doi.org/10.1134/S1028334X14070216

    Article  Google Scholar 

  17. A. V. Chugaev, A. A. Nosova, S. S. Abramov, I. V. Chernyshev, N. S. Bortnikov, Yu. O. Larionova, Yu. V. Goltsman, G. V. Moralev, and A. A. Volfson, “Early Permian stage of formation of gold-ore deposits of northeastern Transbaikalia: Isotope-geochronological (Rb‒Sr and 39Ar–40Ar) data for the Uryakh ore field,” Dokl. Earth Sci. 463 (6), 855–859 (2015). https://doi.org/10.1134/S1028334X1508019X

    Article  Google Scholar 

  18. A. V. Chugaev, O. Yu. Plotinskaya, I. V. Chernyshev, V. A. Lebedev, E. V. Belogub, Yu. V. Goltsman, Yu. O. Larionova and T. I. Oleinikova, “Age and sources of matter for the Kedrovskoe gold deposit, northern Transbaikal Region, Republic of Buryatia: geochronological and isotopic geochemical constraints,” Geol. Ore Deposits, 59 (4), 281–297 (2017).

    Article  Google Scholar 

  19. A. V. Chugaev, I. V. Chernyshev, E. Y. Rytsk, E. B. Salnikova, A. A. Nosova, A. V. Travin, A. B. Kotov, A. M. Fedoseenko and I. V. Anisimova, “Relationship between magmatic, metamorphic, and hydrothermal processes within the Baikal–Muya Terrane (Eastern Siberia): constraints from high–precision geochronological study of the Kedrovskii granitoid massif,” Dokl. Earth Sci. 489 (1), 1363–1367 (2019)

    Article  Google Scholar 

  20. A. V. Chugaev, E. O. Dubinina, I. V. Chernyshev, A. V. Travinb, S. A. Kossova, Yu. O. Larionova, A. A. Nosova, O. Yu. Plotinskaya, T. I. Oleinikova, and A. S. Sadasyuk, “Sources and Age of the gold mineralization of the Irokinda Deposit, Northern Transbaikalia: Evidence from Pb, S, Sr, and Nd isotope-geochemical and 39Ar–40Ar geochronological data,” Geochem. Int., 58, 1208–1227 (2020). https://doi.org/10.1134/S0016702920110051

    Article  Google Scholar 

  21. A. V. Chugaev, A. E. Budyak, Yu. O. Larionova, I. V. Chernyshev, A. V. Travin, Yu. I. Tarasova, B. I. Gareev, G. A. Batalin, I. V. Rassokhina, and T. I. Oleinikova, “40Ar-39Ar and Rb-Sr age constraints on the formation of Sukhoi-Log-style orogenic gold deposits of the Bodaibo District (Northern Transbaikalia, Russia),” Ore Geol. Rev. 144, 104855 (2022). https://doi.org/10.1016/j.oregeorev.2022.104855

    Article  Google Scholar 

  22. N. L. Dobretsov, Ophiolites and problems of the Baikal-Muya ophiolite belt. Magmatism and metamorphism of the BAM zone and their role in minerals, 1, 11-19 (1983) [in Russian].

  23. T. V. Donskaya, D. P. Gladkochub, A. M. Mazukabzov, and A. V. Ivanov, “Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol–Okhotsk Ocean,” J. Asian Earth Sci. 62, 79–97 (2013). https://doi.org/10.1016/j.jseaes.2012.07.023

    Article  Google Scholar 

  24. Gold Deposits of Russia, Ed. by M. M. Konstantinov, (Akvarel’, Moscow, p. 349, 2010) [in Russian].

    Google Scholar 

  25. R. J. Goldfarb, D. I. Groves, and S. Gardoll, “Orogenic gold and geologic time: a global synthesis,” Ore Geol. Rev. 18 (1-2), 1–75 (2001). https://doi.org/10.1016/S0169-1368(01)00016-6

    Article  Google Scholar 

  26. R. J. Goldfarb, R. D. Taylor, G. S. Collins, N. A. Goryachev, and O. F. Orlandini, “Phanerozoic continental growth and gold metallogeny of Asia,” Gondwana Res. 25, 48–102 (2014). https://doi.org/10.1016/j.gr.2013.03.002

    Article  Google Scholar 

  27. D. I. Groves, “The crustal continuum model for late-Archaean lode gold deposits of the Yilgarn block, Western Australia,” Mineralium Deposita 28, 366–374 (1993). https://doi.org/10.1007/BF02431596

    Article  Google Scholar 

  28. D. I. Groves, R. J. Goldfarb, M. Gebre–Mariam, S. G. Hagemann, and F. Robert, “Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types,” Ore Geol. Rev. 13, 7–27 (1998). https://doi.org/10.1016/S0169-1368(97)00012-7

    Article  Google Scholar 

  29. D. I. Groves, R. J. Goldfarb, F. Robert, and G. J. R. Hart, “Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance,” Econ. Geol. 98 (1), 1–29 (2003). https://doi.org/10.2113/gsecongeo.98.1.1

    Article  Google Scholar 

  30. D. I. Groves, and M. Santosh, “The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?” Geosci. Front. 7, 409–417 (2016). https://doi.org/10.1016/j.gsf.2015.08.002

    Article  Google Scholar 

  31. B. L. Gulson, Lead Isotopes in Mineral Exploration (Elsevier, Amsterdam, 1986), Vol. 23.

    Google Scholar 

  32. J. M. A. Hronsky, D. I. Groves, R. R. Loucks, and G. C. Begg, “A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods,” Mineral. Deposita 47, 339–358 (2012). https://doi.org/10.1007/s00126-012-0402-y

    Article  Google Scholar 

  33. D. L. Huston, T. P. Mernagh, S. G. Hagemann, M. P. Doublier, M. Fiorentini, D. C. Champion, A. L. Jaques, K. Czarnota, R. Cayley, R. Skirrow, and E. Bastrakov, “Tectono-metallogenic systems — The place of mineral systems within tectonic evolution, with an emphasis on Australian examples,” Ore Geol. Rev. 76, 168–210 (2016). https://doi.org/10.1016/j.oregeorev.2015.09.005

    Article  Google Scholar 

  34. V. G. Ivanov, V. V. Yarmolyuk, and V. N. Smirnov, “New data on the age of volcanism evidence in West-Zabaikalian Late Mesozoic–Cenozoic volcanic domain,” Dokl. Akad. Nauk 345 (5), 648–652 (1995) [in Russian].

    Google Scholar 

  35. A. V. Ivanov, V. A. Vanin, E. I. Demonterova, D. P. Gladkochub, T. V. Donskaya, and V. A. Gorovoy, “Application of the ‘no fool’s clock’ to dating the Mukodek gold field, Siberia, Russia,” Ore Geol. Rev. 69, 352–359 (2015).https://doi.org/10.1016/j.oregeorev.2015.03.007

    Article  Google Scholar 

  36. I. A. Karpenko, I. F. Migachev, B. K. Mikhailov, and N. G. Petrash, “Current geological and economic estimation of the Sukhoi Log deposit,” Rudy Met. 2, 22–27 (2006).

    Google Scholar 

  37. R. Kerrich and K. F. Cassidy, “Temporal relationships of lode–gold mineralization to accretion, magmatism, metamorphism, and deformation – Archean to present: a review,” Ore Geol. Rev. 9, 263–310 (1994). https://doi.org/10.1016/0169-1368(94)90001-9

    Article  Google Scholar 

  38. V. K. Khrustalev, and A. V. Khrustaleva, Composition and Forecasting Assessment of the Transbaikalian Gold Metasomatites (BNTs SO RAN, Ulan–Ude, 2006) [in Russian].

  39. A. T. Korol’kov, Geodynamics of Gold Regions of the Southern East Siberia (IGU, Irkutsk, 2007) [in Russian].

    Google Scholar 

  40. V. P. Kovach, E. B. Sal’nikova, E. Yu.Rytsk, V. V. Yarmolyuk, A. B. Kotov, I. V. Anisimova, S. Z. Yakovleva, A. M. Fedoseenko, and Yu. V. Plotkina, “The time length of formation of the Angara–Vitim batholith: results of U–Pb geochronological studies,” Dokl. Earth Sci. 444 (1), 553–558 (2012). https://doi.org/10.1134/S1028334X12050133

    Article  Google Scholar 

  41. A. Kröner, V. Kovach, E. Belousova, E. Hegner, R. Armstrong, A. Dolgopolova, R. Seltmann, D. V. Alexeiev, J. E. Hoffmann, J. Wong, M. Sun, K. Cai, T. Wang, Y. Tong, S. A.Wilde, K. E. Degtyarev, and E. Rytsk, “Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt,” Gondwana Res. 25, 103–125 (2014). https://doi.org/10.1016/j.gr.2012.12.023

    Article  Google Scholar 

  42. I. V. Kucherenko, “Late Paleozoic epoch of gold mineralization in the Precamrbian surrounding of the Siberian Platform,” Izv. AN SSSR. Ser. Geol. 6, 90–102 (1989).

    Google Scholar 

  43. I. V. Kucherenko, “Petrological and metallogenic implications of minor intrusions in mesothermal gold fields,” Izv. Tomsk. Politekhn. Univ. 307 (1), 49–57 (2004).

    Google Scholar 

  44. I. V. Kucherenko, “Femophile elements in wall-rock metasomatic aureoles of the Kedrovsky gold deposit (Northern Transbaikalia),” Izv. Tomsk. Politekhn. Univ. 310 (3), 6–10 (2007).

    Google Scholar 

  45. I. V. Kucherenko, “Petrology of hydrothermal metasomatism of dolerites of intraore diles of mesothermal gold deposits. Part 1. Kerdovskoe deposit (Northern Transbaikalia),” Izv. Tomsk. Politekhn. Univ. 325 (1), 155–165 (2014).

    Google Scholar 

  46. I. V. Kucherenko, and R. Yu. Gavrilov, “Femophilic elements in wallrock metasomatites and in ores of mesothermal gold deposits Newsletter of mantle deep,” Int. J. Appl. Fundament. Res., No. 1, 37–43 (2011).

  47. I. V. Kucherenko, and R. Yu. Gavrilov, “Structural-dynamic modes of formation of gold-sulfide-quartz mineralization in the Syulban gold ore protection (basin of the middle reaches of the Vitim River). Part 2, Uryakhskoe ore field,” Proceedings of the Tomsk Polytechnic University, Earth Sciences 320 (1), 19–27 (2012) [in Russian].

    Google Scholar 

  48. R. R. Large, V. V. Maslennikov, F. Robert, L. V. Danyushevsky, R. J. Scott, and Z. Chang, “Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Goldfield, Russia,” Econ. Geol. 102 (7), 1233–1267 (2007). https://doi.org/10.2113/gsecongeo.102.7.1233

    Article  Google Scholar 

  49. A. M. Larin, Granite Rapakivi and Associated Rocks (Nauka, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  50. N. P. Laverov, I. V. Chernyshev, A. V. Chugaev, E. D. Bairova, Yu. V. Gol’tsman, V. V. Distler, and M. A. Yudovskaya, “Formation stages of the largescale noble metal mineralization in the Sukhoi Log Deposit, East Siberia: results of isotope–geochronological study,” Dokl. Earth Sci. 415, 810–814 (2007). https://doi.org/10.1134/S1028334X07050339

    Article  Google Scholar 

  51. J. -P. Liégeois, J. Navez, J. Hertogen, and R. Black, “Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization,” Lithos 45 (1–4), 1–28 (1998). https://doi.org/10.1016/S0024-4937(98)00023-1

    Article  Google Scholar 

  52. B. A. Litvinovsky, A. A. Tsygankov, B. M. Jahn, Y. Katzir, and Y. Be’eri-Shlevin, “Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia),” Lithos 125 (3-4), 845–874 (2011). https://doi.org/10.1016/j.lithos.2011.04.007

    Article  Google Scholar 

  53. A. W. Macfarlane, P. Marcet, A. LeHuray, and U. Petersen, “Lead isotope provinces of the central Andes inferred from ores and crustal rocks,” Econ. Geol. 85 (8), 1857–1880 (1990). https://doi.org/10.2113/gsecongeo.85.8.1857

    Article  Google Scholar 

  54. J. Mao, Y. Wang, H. Li, F. Pirajno, C. Zhang, and R.Wang, “The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D–O–C–S isotope systematics,” Ore Geol. Rev. 33, 361–381 (2008). https://doi.org/10.1016/j.oregeorev.2007.01.003

    Article  Google Scholar 

  55. A. M. McNeil, and R. Kerrich, “Archean lamprophyre dykes and gold mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures and Au concentration,” Can. J. Earth Sci. 23 (3), 324–343 (1986). https://doi.org/10.1139/e86-035

    Article  Google Scholar 

  56. G. L. Mitrofanov, V. V. Levitsky, and N. V. Mitrofanov, “Relations of magmatism and endogenous metallogeny with block structure of the basement in the Koter—Uakit and Muya areas of the western BAM,” Magmatism and Metamorphism of the BAM Zone and their Role in the Formation of Mineral Resources (Nauka, Novosibirsk, 1983), pp. 73–80 [in Russian].

    Google Scholar 

  57. L. A. Neimark, E. Yu. Rytsk, B. M. Gorokhovskii, Yu. V. Amelin, G. V. Ovchinnikova, M. Yu. Smirnov, and T. V. Gracheva, “Geochronological and isotope geochemical study of gold deposits of the Baikal fold area,” Isotope Dating of Endogenous Formations (Nauka, Moscow, 1993), pp. 124–146 [in Russian].

    Google Scholar 

  58. A. A. Nosova, A. V. Kargin, L. V. Sazonova, E. O. Dubinina, A. V. Chugaev, N. M. Lebedeva, D. S. Yudin, Y. O. Larionova, A. Abersteiner, B. I. Gareev, and G. A. Batalin, “Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: Metasomatism of the sub-continental lithospheric mantle related to subduction and plume events,” Lithos 364, 105509 (2020).

    Article  Google Scholar 

  59. E. E. Palenova, E. V. Belogub, O. Yu. Plotinskaya, K. A. Novoselov, V. V. Maslennikov, V. A. Kotlyarov, I. A. Blinov, A. A. Kuzmenko, and I. G. Griboedova, “Chemical evolution of pyrite at the Kopylovsky and Kavkaz black shale-hosted gold deposits, Bodaybo District, Russia: evidence from EPMA and LA-ICP-MS data,” Geol. Ore Deposits 57 (1), 64–83 (2015). https://doi.org/10.1134/S107570151501002X

    Article  Google Scholar 

  60. G. N. Phillips, Australian and global setting for gold in 2013, in Proceedings World Gold 2013, Brisbane, Australia, 2013, (Aust. Inst. Min. Metall., Brisbane, 2013), pp. 15–21.

  61. O. Yu. Plotinskaya, A. V. Chugaev, D. B. Bondar, and V. D. Abramova, “Mineralogy and geochemistry of ores of the Kedrovskoe–Irokinda ore field (Northern Transbaikalia),” Russ. Geol. Geophys. 60 (10), 1407–1432 (2019). https://doi.org/10.15372/RGG2019064

    Article  Google Scholar 

  62. G. G. Popov and B. G. Miziryak, “Kedrovskoe gold field (geological structure and ore potential),” Regional. Geol. Metallogeny 69 (1), 80–87 (2017).

    Google Scholar 

  63. V. Yu. Prokofiev, Y. G. Safonov, V. V. Lüders, A. A. Borovikov, A. A. Kotov, T. M. Zlobina, K. Yu. Murashov, M. A. Yudovskay, and S. L. Selektor, “The sources of mineralizing fluids of orogenic gold deposits of the Baikal–Patom and Muya areas, Siberia: Constraints from the C and N stable isotope compositions of fluid inclusions,” Ore Geol. Rev. 111, 102988 (2019). https://doi.org/10.1016/j.oregeorev.2019.102988

    Article  Google Scholar 

  64. M. Rehkämper and A.M. Halliday, “Accuracy and long-term reproducibility of Pb isotopic measurements by MC‑ICP-MS using an external method for correction of mass discrimination”, Int. J. Mass Spec. 181, 123–133 (1998). https://doi.org/10.1016/S1387-3806(98)14170-2

  65. D. Rhys, J. DiMarchi, M. Smith, R. Friesen, and C. Rombach, “Structural setting, style and timing of vein-hosted gold mineralization at the Pogo deposit, east central Alaska,” Mineralium Deposita 38, 863–875 (2003). https://doi.org/10.1007/s00126-003-0372-1

    Article  Google Scholar 

  66. F.Robert, “Syenite-associated disseminated gold deposits in the Abitibi greenstone belt, Canada,” Mineral. Deposita 36, 503–516 (2001). https://doi.org/10.1007/s001260100186

    Article  Google Scholar 

  67. N. M. S. Rock, P. Duller, R. S. Haszeldine, and D. I. Groves, “Lamprophyres as potential gold exploration targets: Some preliminary observations and speculations,” Geol. Dep. Ext. Serv., Univ. West. Aust. 1, 271–286 (1987).

    Google Scholar 

  68. E. Yu. Rytsk, Yu. V. Amelin, N. G. Rizvanova, R. Sh. Krimsky, G. L. Mitrofanov, N. N. Mitrofanova, V. I. Perelyaev, and V. S. Shalaev, “Age of rocks in the Baikal–Muya foldbelt,” Stratigraphy. Geol. Correlation, 9 (4), 315–326 (2001).

    Google Scholar 

  69. E. Yu. Rytsk, A. F. Makeev, V. A. Glebovitsky, and A. M. Fedoseenko, “A Vendian (590 ± 5 Ma) age for the Padora Group in the Baikal-Muya Foldbelt: Evidence from U-Pb zircon data,” Dokl. Earth Sci. 397A (6), 765–767 (2004).

    Google Scholar 

  70. E. Yu. Rytsk, V. P. Kovach, V. I. Kovalenko, and V. V. Yarmolyuk, “Structure and evolution of the continental crust in the Baikal Fold Region,” Geotectonics 41, 440–464 (2007a). https://doi.org/10.1134/S0016852107060027

    Article  Google Scholar 

  71. E. Yu. Rytsk, A. F. Makeev, V. A. Glebovitsky, and A. M. Fedoseenko, “Early Vendian age of multiple gabbro-granite complexes of the Karalon–Mamakan zone, Baikal-Muya belt: New U-Pb zircon data,” Dokl. Earth Sci. 415, 911–914 (2007b). https://doi.org/10.1134/S1028334X07060189

    Article  Google Scholar 

  72. E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, E. S. Bogomolov, and A. B. Kotov, “Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt,” Geotectonics 45 (5), 349–377 (2011). https://doi.org/10.1134/S0016852111050037

    Article  Google Scholar 

  73. E. Yu. Rytsk, E. B. Salnikova, V. A. Glebovitsky, S. D. Velikoslavinsky, I. A. Alekseev, A. M. Fedoseenko, and Yu. V. Plotkina, “The Vendian age of granodiorites and plagiogranites of the Tallainskii complex (Baikal–Muya Belt): U–Pb isotope data,” Dokl. Earth Sci. 474 (1), 569–573 (2017a). https://doi.org/10.1134/S1028334X17050166

    Article  Google Scholar 

  74. E. Yu. Rytsk, S. D. Velikoslavinskii, S. A. Smyslov, A. B. Kotov, V. A. Glebovitskii, E. S. Bogomolov, E. V. Tolmacheva, and V. P. Kovach, “Geochemical peculiarities and sources of Late Paleozoic high-K and ultrapotassic syenite of the Synnyr and Tas massifs (eastern Siberia),” Dokl. Earth Sci. 476, 1043–1047 (2017b). https://doi.org/10.1134/S1028334X17090070

    Article  Google Scholar 

  75. E. Yu. Rytsk, S. D. Velikoslavinsky, I. A. Alekseev, E. S. Bogomolov, V. P. Kovach, and V. I. Samorukov, “Geology of the Karalon gold ore field in the Mid-Vitim Highlands,” Geol. Ore Deposits 60, 300–327 (2018a). https://doi.org/10.1134/S1075701518040049

    Article  Google Scholar 

  76. E. Yu. Rytsk, E. B. Salnikova, S. D. Velikoslavinskii, E. S. Bogomolov, A. A. Andreev, V. P. Kovach, I. V. Anisimova, and A. M. Fedoseenko, “Late Permian intraplate magmatism of the Baikal–Muya Belt: U–Pb geochronology and Nd-isotope data,” Dokl. Earth Sci. 483, 1445–1450 (2018b). https://doi.org/10.1134/S1028334X18110132

    Article  Google Scholar 

  77. I. Y. Safonova, A. Kotlyarov, and S. Krivonogov, “Intra-Oceanic Arcs of the Paleo-Asian Ocean,” Geodynam. Tectonophys. 8, 547–550 (2017). https://doi.org/10.5800/GT-2017-8-3-0287

    Article  Google Scholar 

  78. M. Sharma, A. Basu, and G. V. Nesterenko, “Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics,” Earth Planet. Sci. Lett. 113, 365–381 (1992).

    Article  Google Scholar 

  79. V. S. Shatsky, E. S. Sitnikova, A. A. Tomilenko, A. L. Ragozin, O. A. Koz’menko, and E. Jagoutz, “Eclogite-gneiss complex of the Muya block (East Siberia): Age, mineralogy, geochemistry, and petrology,” Russ. Geol. Geophys. 53 (7), 501–521 (2012). https://doi.org/10.1016/j.rgg.2012.04.001

    Article  Google Scholar 

  80. S. Skuzovatov, K. L. Wang, S. Dril, H. Y. Lee, and Y. Iizuka, “Geochemistry, zircon U–Pb and Lu–Hf systematics of high–grade metasedimentary sequences from the South Muya block (northeastern Central Asian Orogenic Belt): reconnaissance of polymetamorphism and accretion of Neoproterozoic exotic blocks in southern Siberia,” Precambrian Res. 321, 34–53 (2019). https://doi.org/10.1016/j.precamres.2018.11.022

    Article  Google Scholar 

  81. N. A. Sryvtsev, V. A. Khalilov, V. V. Buldygerov, and V. I. Perelyaev, “Geochronology of granitoids of the Baikal-Muya belt,” Geol Geofiz. 9, 72–78 (1992).

    Google Scholar 

  82. J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two–stage model,” Earth Planet. Sci. Lett. 26 (2), 207–221 (1975). https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  83. C. D. Standish, B. Dhuime, R. J. Chapman, C. J. Hawkesworth, and A. W. G. Pike, “The genesis of gold mineralisation hosted by orogenic belts: a lead isotope investigation of Irish gold deposits,” Chem. Geol. 378-379, 40–51 (2014). https://doi.org/10.1016/j.chemgeo.2014.04.012

    Article  Google Scholar 

  84. R. H. Steiger and E. Jager, “Subcomission on geochronology: convention on the use of decay constants in geo– and cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

  85. Y. I. Tarasova, A. E. Budyak, N. A. Goryachev, V. L. Tauson, S. Y. Skuzovatov, N. N. Bryukhanova, A. V. Parshin, A. V. Chugaev, V. D. Abramova, B. I. Gareev, and V. N. Reutsky, “Mineralogical and isotope-geochemical (δ13C, δ34C and Pb-Pb) characteristics of the Krasniy gold mine (Baikal-Patom highlands): constraining ore-forming mechanisms and the model for Sukhoi Log-type deposits,” Ore Geol. Rev. 119, 103365 (2020). https://doi.org/10.1016/j.oregeorev.2020.103365

    Article  Google Scholar 

  86. S. Tappe, R. L. Romer, A. Stracke, A. Steenfelt, K. A. Smart, K. Muehlenbachs, and T. H. Torsvik, “Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation,” Earth Planet. Sci. Lett. 466, 152–167 (2017).

    Article  Google Scholar 

  87. A. G. Tomkins, “Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis,” Geochim. Cosmochim. Acta 74, 3246–3259 (2010). https://doi.org/10.1016/j.gca.2010.03.003

    Article  Google Scholar 

  88. A. A. Tsygankov, B. A. Litvinovsky, B. M. Jahn, M. Reichow, D. Y. Liu, A. N. Larionov, S. L. Presnyakov, Ye. N. Lepekhina, and S. A. Sergeev, “Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U–Pb isotope data),” Russ. Geol. Geophys. 51 (9), 972–994 (2010). https://doi.org/10.1016/j.rgg.2010.08.007

    Article  Google Scholar 

  89. A. A. Tsygankov, G. N. Burmakina, V. B. Khubanov, and M. D. Buyantuev, “Geodynamics of Late Paleozoic batholith-forming processes in western Transbaikalia,” Petrology 25, 396–418 (2017). https://doi.org/10.1134/S0869591117030043

    Article  Google Scholar 

  90. V. A. Vanin, A. V. Tatarinov, D. P. Gladkochub, A. M. Mazukabzov, and V. G. Molochny, “The role of dynamometamorphism in the formation of the Mukodek gold field (north Pribaikalie),” Geodynamics and Tectonophysics 8 (3), 643–653 (2017). https://doi.org/10.5800/GT-2017-8-3-0310

  91. V. A. Vanin, A. V. Chugaev, E. I. Demonterova, D. P. Gladkochub, and A. M. Mazukabzov, “Geologic structure of the Mukodek gold field (Northern Transbaikalia) and sources of matter (Pb-Pb and Sm-Nd data),” Russ. Geol. Geophys. 59 (9), 1078–1086 (2018). https://doi.org/10.1016/j.rgg.2018.08.002

    Article  Google Scholar 

  92. N. M. Vielreicher, D. I. Groves, L. W. Snee, I. R. Fletcher, and N. J. McNaughton, “Broad synchroneity of three gold mineralization styles in the Kalgoorlie gold field: SHRIMP, U-Pb, and 40Ar/39Ar geochronological evidence,” Econ. Geol. 105 (1), 187–227 (2010). https://doi.org/10.2113/gsecongeo.105.1.187

    Article  Google Scholar 

  93. N. V. Vladykin, I. A. Sotnikova, A. B. Kotov, V. V. Yarmolyuk, E. B. Sal’nikova, and S. Z. Yakovleva, “Structure, age, and ore potential of the Burpala rare-metal alkaline massif, northern Baikal region,” Geol. Ore Deposits 56 (4), 239–256 (2014). https://doi.org/10.1134/S1075701514040060

    Article  Google Scholar 

  94. V. V. Vrublevskii, I. F. Gertner, and A. V. Chugaev, “Parental sources of high–alumina alkaline melts: Nd, Sr, Pb, and O isotopic evidence from the Devonian Kiya–Shaltyr gabbro–urtite intrusion, South Siberia“, Dokl. Earth Sci. 479, 518–523 (2018).

    Article  Google Scholar 

  95. X. Wang, Z. Wang, H. Cheng, K. Zong, C. Y. Wang, L. Ma, Y-Ch. Cai, S. Foley, Z. Hu, “Gold endowment of the metasomatized lithospheric mantle for giant gold deposits: Insights from lamprophyre dykes“, Geochim. Cosmochim. Acta. 316, 21–40 (2022). https://doi.org/10.1016/j.gca.2021.10.006

    Article  Google Scholar 

  96. A. P. Webber, S. Roberts, R. N. Taylor, and I. K. Pitcairn, “Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction,” Geology 41, 87–90 (2013). https://doi.org/10.1130/G33301.1

    Article  Google Scholar 

  97. J. L. Wooden, G. K. Czamanske, V. A. Fedorenko, N. T. Arndt, C. Chauvel, R. M. Bouse, B.–S. W. King, R. J. Knight, and D. F. Siems, “Isotopic and trace–element constraints on mantle and crustal contribution to Siberian continental flood basalts, Noril’sk area, Siberia,” Geochim. Cosmochim. Acta 57, 3677–3704 (1993). https://doi.org/10.1016/0016-7037(93)90149-Q

    Article  Google Scholar 

  98. L. I. Yalovik, A. V. Tatarinov, V. A. Vanin, “Yubileyny ore field of polycomponent ores in Transbaikalia: new geologic-genetic representations and ore capacity evaluation,” Proc. Vth International Conference. Geodynamics and Metallogeny of North and Central Asia (Buryatsk. Gos. Univ., Ulan-Ude, 2018) pp. 412–414 [in Russian].

  99. V. V. Yarmolyuk, S. V. Budnikov, V. I. Kovalenko, V. S. Antipin, A. V. Goreglyad, E. B. Sal’nikova, A. B. Kotov, I. K. Kozakov, V. P. Kovach, S. Z. Yakovleva, and N. G. Berezhnaya, “Geochronology and geodynamic setting of the Angara–Vitim Batholith,” Petrology 5 (5), 401–414 (1997).

    Google Scholar 

  100. V. V. Yarmolyuk, V. P. Kovach, I. K. Kozakov, A. M. Kozlovsky, A. B. Kotov, and E. Yu. Rytsk, “Mechanisms of continental crust formation in the Central Asian Foldbelt,” Geotectonics 46 (4), 251–272 (2012). https://doi.org/10.1134/S001685211204005X

    Article  Google Scholar 

  101. V. V. Yarmolyuk, M. I. Kuzmin, and R. E. Ernst, “Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt,” J. Asian Earth Sci. 93, 158–179 (2014). https://doi.org/10.1016/j.jseaes.2014.07.004

    Article  Google Scholar 

  102. V. V. Yarmolyuk, and K. E. Degtyarev, “Precambrian terrains of Central Asian orogenic belt: comparative characteristics, types and peculiarities of the tectonic evolution,” Geotectonics 1, 3–43 (2019). https://doi.org/10.31857/S0016-853X201913-43

    Article  Google Scholar 

  103. R. E. Zartman, “Lead isotopic provinces in the Cordillera of the Western United States and their geologic significance,” Econ. Geol. 69 (6), 792–805. (1974). https://doi.org/10.2113/gsecongeo.69.6.792

    Article  Google Scholar 

  104. J. Zheng, M. Sun, M-F. Zhou, and P. Robinson, “Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithosphere evolution of the North China Craton,” Geochim. Cosmochim. Acta 69 (13), 3401–3418 (2005). https://doi.org/10.1016/j.gca.2005.03.020

    Article  Google Scholar 

  105. A. I. Zhilyaeva, V. B. Naumov, and G. P. Kudryavtseva, “Mineral composition and fluid regime of formation of the Yubileinoe gold deposit (Transbaikalian region, Russia),” Geol. Ore Deposits 42 (1), 57–67 (2000).

    Google Scholar 

  106. Yu. A. Zorin, “Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia,” Tectonophysics 306 (1), 33–56 (1999). https://doi.org/10.1016/S0040-1951(99)00042-6

    Article  Google Scholar 

  107. Yu. A. Zorin, E. V. Sklyarov, V. G. Belichenko, and A. M. Mazukabzov, “Island arc-back-arc basin evolution: implications for Late Riphean-Early Paleozoic geodynamic history of the Sayan-Baikal folded area,” Russ. Geol. Geophys. 50 (3), 149–161 (2009). https://doi.org/10.1016/j.rgg.2008.06.022

    Article  Google Scholar 

  108. R. E. Zartman, and B. R. Doe, “Plumbotectonics - the model,” Tectonophysics 75, 135–162 (1981). https://doi.org/10.1016/0040-1951(81)90213-4.

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Ratkin and E.Yu. Rytsk for comments, which helped us to improve our manuscript. Constructive and thorough reviews by V.V. Yarmolyuk and A.B. Kotov are gratefully acknowledged.

Funding

This work was carried out in the framework of the Government–financed Programs of IGEM RAS (121041500219-4) and Institute of the Earth’s Crust SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chugaev.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugaev, A.V., Vanin, V.A., Chernyshev, I.V. et al. Lead Isotope Systematics of the Orogenic Gold Deposits of the Baikal-Muya Belt (Northern Transbaikalia): Contribution of the Subcontinental Lithospheric Mantle in Their Genesis. Geochem. Int. 60, 1352–1379 (2022). https://doi.org/10.1134/S0016702922110039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922110039

Keywords:

Navigation