Skip to main content
Log in

Physicochemical Parameters and Geochemical Features of Fluids at Cenozoic Gold Deposits

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper completes our summary of literature data on the physicochemical parameters and characteristics of the chemical composition of mineralizing fluids at endogenous gold deposits. The average values and variation limits of the temperature (50–845°С, mean 290°C), pressure (20–3600 bar, mean 600 bar), and salinity (0.1–88.0 wt % equiv. NaCl, mean 13.1 wt % equiv. NaCl) of fluids of Cenozoic gold deposits are estimated. The inherent features of the gas composition of the mineralizing fluids of these deposits are revealed. Parameters of mineralizing fluids at Cenozoic gold deposits are discussed in comparison with the analogous parameters of fluids at Archean, Proterozoic, Paleozoic and Mesozoic gold deposits. The chemical composition and parameters of mineral-forming fluids of gold deposits were determined to systematically evolve with time. Cenozoic gold deposits generally differ from older gold deposits in having a higher fluid temperature and salinity, lower pressure, and the highest value of the CO2/CH4 ratio. The decrease in fluid pressure from ancient gold deposits to younger ones may be associated with differences in the erosion depths of ancient and young mineralizing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. Alipour-Asll, “Geochemistry, fluid inclusions and sulfur isotopes of the Govin epithermal Cu-Au mineralization, Kerman province, SE Iran,” J. Geochem. Explor. 196, 156–172 (2019).

    Article  Google Scholar 

  2. A. S. Andre and J. L. Leroy, “Fluid inclusions and microfissuration data on the epithermal Au-Ag ore deposits in the Cordillera Shila, southern Peru,” Terra Nostra: ECROFI XV—Abstr. and Program (1999), pp. 7–9.

  3. A. -S. Andre-Mayer, J. L. Leroy, L. Bailly, A. Chauvet, E. Marcoux, L. Grancea, F. Llosa, and J. Rosas, “Boiling and vertical mineralization zoning: a case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru,” Mineral. Deposita 37 (5), 452–464 (2002).

    Article  Google Scholar 

  4. E. D. Andreeva, H. Matsueda, V. M. Okrugin, R. Takahashi, and Sh. Ono, “Au–Ag–Te mineralization of the low-sulfidation epithermal Aginskoe deposit, Central Kamchatka, Russia,” Res. Geol. 63, 337–349 (2013).

    Article  Google Scholar 

  5. D. W. Beaty, C. G. Cunninghem, R. O. Rye, T. A. Steven, and E. Gonzalez-Urien, “Geology and geochemistry of the Deer Trail Pb–Zn–Ag–Au–Cu Manto deposits, Marysvale district, West-Central Utah,” Econ. Geol. 81, 1932–1952 (1986).

    Article  Google Scholar 

  6. P. M. Bethke, R. O. Rye, R. E. Stoffregen, and P. G. Vikre, “Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope, and fluid-inclusion evidence,” Chem. Geol. 215, 281–315 (2005).

    Article  Google Scholar 

  7. R. J. Bodnar, “A method of calculating fluid inclusion volumes based on vapor bubble diameters and P–V–T–X properties of inclusions fluids,” Econ. Geol. 78, 535–542 (1983).

    Article  Google Scholar 

  8. R. J. Bodnar, “Revised equation and table for determining the freezing point depression of H2O–NaCl solutions,” Geochim. Cosmochim. Acta 57, 683–684 (1993).

    Article  Google Scholar 

  9. A. A. Borovikov, A. S. Lapukhov, A. S. Borisenko, and Yu. V. Seretkin, “The Asachinskoe epithermal Au–Ag deposit in southern Kamchatka): physicochemical conditions of formation,” Russ. Geol. Geophys. 50, 685–694 (2009).

    Article  Google Scholar 

  10. G. Bozkaya and D. Banks, “Physico-chemical controls on ore deposition in the Arapucandere Pb–Zn–Cu-precious metal deposit, Biga Peninsula, NW Turkey,” Ore Geol. Rev. 66, 65–81 (2015).

    Article  Google Scholar 

  11. G. Bozkaya, Ö. Bozkaya, D. A. Banks, and A. Gökçe, “P‑T-X constraints on the Koru epithermal base–metal (±Au) deposit, Biga Peninsula, NW Turkey,” Ore Geol. Rev. 119, 103349 (2020).

    Article  Google Scholar 

  12. P. E. Brown, “Flincor: A microcomputer program for the reduction and investigation of fluid inclusion data,” Am. Mineral. 74, 1390–1393 (1989).

    Google Scholar 

  13. A. Camprubi, E. Gonzalez-Partida, A. Iriondo, and G. Levresse, “Mineralogy, fluid characteristics, and depositional environment of the Paleocene epithermal Au–Ag deposits of the El Barqueno district, Jalisco, Mexico,” Econ. Geol. 101, 235–247 (2006).

    Article  Google Scholar 

  14. A. Chauvet, L. Bailly, A. -S. Andre, P. Monie, D. Cassard, F. L. Tajada, J. R. Vargas, and J. Tuduri, “Internal vein texture and vein evolution of the epithermal Shila–Paula district, southern Peru,” Mineral. Deposita. 41, 387–410 (2006).

    Article  Google Scholar 

  15. A. B. Christie, M. P. Simpson, R. L. Brathwaite, J. L. Mauk, and S. F. Simmons, “Epithermal Au-Ag and related deposits of the Hauraki goldfield, Coromandel volcanic zone, New Zealand,” Econ. Geol. 102, 785–816 (2007).

    Article  Google Scholar 

  16. H. A. Cocker, J. L. Mauk, and S. D.C. Rabone, “The origin of Ag–Au–S–Se minerals in adularia–sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand,” Mineral. Deposita. 48, 249–266 (2013).

    Article  Google Scholar 

  17. I. Corral, E. Cardellach, M. Corbella, A. Canals, A. Griera, D. Gómez-Gras, and C. A. Johnson, “Origin and evolution of mineralizing fluids and exploration of the Cerro Quema Au–Cu deposit (Azuero Peninsula, Panama) from a fluid inclusion and stable isotope perspective,” Ore Geol. Rev. 80, 947–960 (2017).

    Article  Google Scholar 

  18. D. Craw, “Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and Alpine Schist, New Zealand,” Chem. Geol. 98, 221–236 (1992).

    Article  Google Scholar 

  19. D. Craw, D. A.H. Teagle, and R. Belocky, “Fluid immiscibility in late-Alpine gold-bearing veins, Eastern and Northwestern European Alps,” Mineral. Deposita 28, 28–36 (1993).

    Article  Google Scholar 

  20. M. C. D’Annunzioa and N. Rubinstein, “The Quebrada del Diablo Lower West Au deposit (Gualcamayo mining district, Argentina): A Carlin-type mineralization?,” J. South Amer. Earth Sci. 92, 95–106 (2019).

    Article  Google Scholar 

  21. A. G. S. Davies, D. R. Cooke, and J. B. Gemmell, “Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit,” Econ. Geol. 103, 717–757 (2008).

    Article  Google Scholar 

  22. C. E. J. De Ronde and P. Blattner, “Hydrothermal alteration, stable isotopes, and fluid inclusions of the Golden Cross epithermal gold-silver deposit, Waihi, New Zealand,” Econ. Geol. 83, 895–917 (1988).

    Article  Google Scholar 

  23. P. Dhamelincourt, J.-M. Beny, J. Dubessy, and B. Poty, “Analyse d’inclusions fluides a la microsonde MOLE a effet Raman,” Bull. Mineral. 102, 600–610 (1979).

    Google Scholar 

  24. L. W. Diamond, “Fluid inclusions evidence for P–V–T–X evolution hydrothermal solutions in late-alpine gold–quartz veins at Brusson, Val d’Ayas, northwest Italian Alps,” Amer. J. Sci. 290, 912–958 (1990).

    Article  Google Scholar 

  25. S. M. P. Frias, A. Imai, R. Takahashi, M. I.R. Balangue-Tarriela, C. Arcilla, and N. Blamey, “Geology, alteration, and mineralization of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines,” Res. Geol. 69, 351–384 (2019).

    Article  Google Scholar 

  26. H. E. Frimmel, D. I. Groves, J. Kirk, J. Ruiz, J. Chesley, and W. E.L. Minter, “The formation and preservation of the Witwatersrand Goldfields, the World’s largest gold province,” Econ. Geol. 100, 769–797 (2005).

    Google Scholar 

  27. L. S. Ge, J. Deng, H. G. Li, L. Q. Yang, W. Z. Zhang, S. S. Yuan, and J. B. Xing, “Superposed mineralization in Daping Au–Cu–Ag–Pb deposit, Yunnan province: Evidences from geology, fluid inclusion and stable isotopes,” Acta Petrol. Sinica 23, 2131–2143 (2007).

    Google Scholar 

  28. R. J. Goldfarb, D. L. Leach, M. L. Miller, and W. J. Pickthorn, “Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization within the Cretaceous Valdez Group, south-central Alaska,” Geol. Ass. Canada Spec. Pap. 32, 87–105 (1986).

    Google Scholar 

  29. R. J. Goldfarb, D. L. Leach, S. C. Rose, and G. P. Landis, “Fluid inclusion geochemistry of gold-bearing quartz veins of the Juneau gold belt, southeastern Alaska – implications for ore genesis,” Econ. Geol. Monogr. 6, 363–375 (1989).

    Google Scholar 

  30. N. A. Goryachev, “Gold Deposits in the Earth’s History,” Geol. Ore Deposits 61 (6), 495–511 (2019).

    Article  Google Scholar 

  31. J. A. Groff, “Distinguishing generations of quartz and a distinct gas signature of deep high-grade Carlin-type gold mineralization using quadrupole mass spectrometry,” Ore Geol. Rev. 95, 518–536 (2018).

    Article  Google Scholar 

  32. J. A. Groff, “Evidence of boiling and epithermal vein mineralization in Carlin-type deposits on the Getchell trend, Nevada,” Ore Geol. Rev. 106, 340–350 (2019).

    Article  Google Scholar 

  33. J. A. Groff, A. R. Campbell, and D. I. Norman, “An evaluation of fluid inclusion microthermometric data for orpiment–realgar–calcite–barite–gold mineralization at the Betze and Carlin mines, Nevada,” Econ. Geol. 97, 1341–1346 (2002).

    Article  Google Scholar 

  34. H. Gropper, M. Calvo, H. Crespo, C. R. Bisso, W. A. Cuadra, P. M. Dunkerley, and E. Aguirre, “The epithermal gold–silver deposit of Choquelimpie, Northern Chile,” Econ. Geol. 86, 1206–1221 (1991).

    Article  Google Scholar 

  35. A. Y. A. Hakim, F. Melcher, W. Prochaska, R. Bakker, and G. Rantitsch, “Formation of epizonal gold mineralization within the Latimojong metamorphic complex, Sulawesi, Indonesia: Evidence from mineralogy, fluid inclusions and Raman spectroscopy,” Ore Geol. Rev. 97, 88–108 (2018).

    Article  Google Scholar 

  36. N. Hanilçi, G. Bozkaya, D. A. Banks, O. Bozkaya, V. Prokofiev, and Y. Öztaş, “Fluid inclusion characteristics of the Kışladağ porphyry Au deposit, Western Turkey,” Minerals 10, 64, 1–16 (2020).

    Article  Google Scholar 

  37. A. C. Harris, V. S. Kamenetsky, N. C. White, Achterbergh E. van, and C. G. Ryan, “Melt inclusions in veins: Linking magmas and porphyry Cu deposits,” Science. 302 (5653), 2109–2111 (2003).

    Article  Google Scholar 

  38. A. C. Harris, V. S. Kamenetsky, N. C. White, and D. A. Steele, “Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina,” Resource Geol. 54, 341–356 (2004).

    Article  Google Scholar 

  39. W. He, L. Yang, J. Brugger, Mc C. T.C. Campbell, Y. Luc, X. Bao, X. Gao, Y. Lua, and Y. Xing, “Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes,” Ore Geol. Rev. 90, 847–862 (2017).

    Article  Google Scholar 

  40. J. W. Hedenquist, A. J. Arribas, and T. J. Reynolds, “Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines,” Econ. Geol. 93, 373–404 (1998).

    Article  Google Scholar 

  41. J. W. Hedenquist, Y. Matsuhisa, E. Izawa, N. C. White, W. F. Giggenbach, and M. Akiro, “Geology, geochemistry and origin of high sulfidation Cu–Au mineralization in the Nansatsu district, Japan,” Econ. Geol. 89, 1–30 (1994).

    Article  Google Scholar 

  42. E. U. Imer, N. Gulec, I. Kuscu, and A. E. Fallick, “Genetic investigation and comparison of Kartaldag and Madendag epithermal gold deposits in Canakkale, NW Turkey,” Ore Geol. Rev. 53, 204–222 (2013).

    Article  Google Scholar 

  43. P. W. Jewell and W. T. Parry, “Geochemistry of the Mercur gold deposit (Utah, USA),” Chem. Geol. 69, 245–265 (1988).

    Article  Google Scholar 

  44. S. H. Jiang, F. J. Nie, P. Hu, X. R. Lai, and Y. F. Liu, “Mayum: an orogenic gold deposit in Tibet, China,” Ore Geol. Rev. 36 (1–3), 160–173 (2009).

    Article  Google Scholar 

  45. T. W. Johnson and L. D. Meinert, “Au-Cu-Ag skarn and replacement mineralization in the McLaren deposit, New World district, Park County, Montana,” Econ. Geol. 89, 969–993 (1994).

    Article  Google Scholar 

  46. T. W. Johnson and T. B. Thompson, “Breccia- and carbonate-hosted Au–Cu–Ag replacement mineralization associated with the Homestake porphyry intrusive complex, New World district, Montana,” Econ. Geol. 101, 955–980 (2006).

    Article  Google Scholar 

  47. M. K. Johnston, T. B. Thompson, D. L. Emmons, and K. Jones, “Geology of the Cove mine, Lander County, Nevada, and a genetic model for the McCoy-Cove hydrothermal system,” Econ. Geol. 103, 759–782 (2008).

    Article  Google Scholar 

  48. R. J. Kamilli and H. Ohmoto, “Paragenesis, zoning, fluid inclusion, and isotopic studies of the Finlandia vein, Colqui district, Central Peru,” Econ. Geol. 72, 950–982 (1977).

    Article  Google Scholar 

  49. M. H. Karimpour, A. M. Shafaroudi, A. M. Bajestani, R. K. Schader, Ch. R. Stern, L. Farmer, and M. Sadeghi, “Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit,” J. Geochem. Explor. 183, 58–78 (2017).

    Article  Google Scholar 

  50. S. A. Kekelia, M. A. Kekelia, S. I. Kuloshvili, N. G. Sadradze, N. E. Gagnidze, V. Z. Yaroshevich, G. G. Asatiani, J. L. Doebrich, R. J. Goldfarb, and E. E. Marsh, “Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: Their genesis and prospecting criteria,” Ore Geol. Rev. 34, 369–386 (2008).

    Article  Google Scholar 

  51. C. R. Kelson, D. E. Crowe, and H. J. Stein, “Geochemical and geochronological constraints on mineralization within the Hilltop, Lewis, and Bullion mining district, Battle Mountain-Eureka trend, Nevada,” Econ. Geol. 103, 1483–1506 (2008).

    Article  Google Scholar 

  52. S. E. Kesler and B. H. Wilkinson, “The role of exhumation in the temporal distribution of ore deposits. Econ. Geol. 101, 919–922 (2006).

    Article  Google Scholar 

  53. P. Kodera, J. Lexa, A. H. Rankin, and A. E. Fallik, “Epithermal gold veins in a caldera setting: Banska Hodrusa, Slovakia,” Mineral. Deposita. 39, 921–943 (2005).

    Article  Google Scholar 

  54. H. Kouhestani, M. Ghaderi, Zh. Chang, and Kh. Zaw, “Constraints on the ore fluids in the Chah Zard breccia-hosted epithermal Au–Ag deposit, Iran: Fluid inclusions and stable isotope studies,” Ore Geol. Rev. 65, 512–521 (2015).

    Article  Google Scholar 

  55. H. Kouhestani, M. A.A. Mokhtari, Zh. Chang, H. J. Stein, and C. A. Johnson, “Timing and genesis of ore formation in the Qarachilar Cu–Mo–Au deposit, Ahar–Arasbaran metallogenic zone, NW Iran: Evidence from geology, fluid inclusions, O–S isotopes and Re–Os geochronology,” Ore Geol. Rev. 102, 757–775 (2018).

    Article  Google Scholar 

  56. V. A. Kovalenker, V. B. Naumov, V. Yu. Prokof’ev, S. Jelen, and M. Gaber, “Compositions of magmatic melts and evolution of mineral-forming fluids in the Banska Stiavnica epithermal Au–Ag–Pb–Zn deposit, Slovakia: A study of inclusions in minerals,” Geochem. Int. 44 (2), 118–136 (2006).

    Article  Google Scholar 

  57. P. F. Lattanzi, E. Curti, and M. Bastogi, “Fluid inclusions studies on the gold deposits on the Upper Anzasca Valley, Northwestern Alps, Italy,” Econ. Geol. 84, 1382–1397 (1989).

    Article  Google Scholar 

  58. C. H. B. Leitch, C. I. Godwin, T. H. Brown, and B. E. Taylor, “Geochemistry of mineralizing fluids in the Bralorne–Pioneer mesothermal gold vein deposit, British Columbia, Canada,” Econ. Geol. 86, 318–353 (1991).

    Article  Google Scholar 

  59. G. M. Li, K. Z. Qin, K. S. Ding, T. B. Liu, J. X. Li, S. H. Wang, S. Y. Jiang, and X. C. Zhang, “Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu–Au+/–Mo deposits in the Southeastern Gangdese arc, Southern Tibet: implications for deep exploration,” Res. Geol. 56, 315–336 (2006).

    Article  Google Scholar 

  60. S. Lindblom, “Organic matter and gold deposition in disseminated gold deposits in Nevada,” Source, Transport and Deposition of Metals (Balkema, Rotterdam, 1991), pp. 553–556.

    Google Scholar 

  61. H. Liu, X. Bi, H. Lu, R. Hu, T. Lan, X Wang, and M. Huang, “Nature and evolution of fluid inclusions in the Cenozoic Beiya gold deposit, SW China,” J. Asian Earth Sci. 161, 35–56 (2018).

    Article  Google Scholar 

  62. J. Majzlan, Kh. Berkh, S. Kiefer, P. Koděra, A. E. Fallick, M. Chovan, F. Bakos, A. Biroň, S. Ferenc, and J. Lexa, “Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia,” Mineral. Petrol. 112, 1–23 (2018).

    Article  Google Scholar 

  63. D. P. Mancano and A. R. Campbell, “Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu–Au deposit,” Geochim. Cosmochim. Acta 59, 3909–3916 (1995).

    Article  Google Scholar 

  64. M. F. Márquez-Zavalía and C. A. Heinrich, “Fluid evolution in a volcanic-hosted epithermal carbonate–base metal–gold vein system: Alto de la Blenda, Farallón Negro, Argentina,” Mineral. Deposita 51, 873–902 (2016).

    Article  Google Scholar 

  65. T. Mernagh and J. Mavrogenes, “Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit,” Chem. Geol. 508, 210–224 (2019).

    Article  Google Scholar 

  66. T. P. Mernagh, C. Leys, and R. W. Henley, “Fluid inclusion systematics in porphyry copper deposits: The super–giant Grasberg deposit, Indonesia, as a case study,” Ore Geol. Rev. 123, 103570 (2020).

    Article  Google Scholar 

  67. J. P. Milesi, E. Marcoux, T. Sitorus, M. Simandjuntak, J. Leroy, and L. Bailly, “Pongkor (west Java, Indonesia): a Pliocene supergene-enriched epithermal Au–Ag–Mn) deposit,” Mineral. Deposita 34, 131–149 (1999).

    Article  Google Scholar 

  68. L. D. Miller, R. J. Goldfarb, L. W. Snee, C. A. Cent, and R. A. Kirkham, “Structural geology, age, and mechanisms of gold vein formation at the Kensington and Jualin deposits, Berners Bay District, Southeast Alaska,” Econ. Geol. 90, 343–368 (1995).

    Article  Google Scholar 

  69. L. J. Millonig, A. Beinlich, M. Raudsepp, F. Fionnuala, D. A. Archibald, R. L. Linnen, and L. A. Groat, “The Engineer mine, British Columbia: An example of epithermal Au-Ag mineralization with mixed alkaline and subalkaline characteristics,” Ore Geol. Rev. 83, 235–257 (2017).

    Article  Google Scholar 

  70. O. F. Mironova, “Volatile components of natural fluids: Evidence from inclusions in minerals: methods and results,” Geochem. Int. 48 (1), 83–90 (2010).

    Article  Google Scholar 

  71. O. F. Mironova, A. N. Salazkin, and V. B. Naumov, “Bulk and point methods in analyzing volatiles in fluid inclusions,” Geokhimiya, No. 7, 974–984 (1995).

    Google Scholar 

  72. R. W. Mo, X. M. Sun, W. Zhai, F. Zhou, and Y. H. Liang, “Ore-forming fluid geochemistry and metallogenic mechanism from Mazhala gold-antimony deposit in southern Tibet, China,” Acta Petrol. Sinica 29, 1427–1438 (2013).

    Google Scholar 

  73. F. Molnar, “Temporal and spatial evolution of hydrothermal fluids in the Au–Ag ore deposit of Telkibanya (Tokaj Mts, NE-Hungary),” Abstr. XI Symposium ECROFI, Firenze, 1991 (Firenze, 1991), pp. 149–150.

  74. D. Moncada, D. Baker, and R. J. Bodnar, “Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México,” Ore Geol. Rev. 89, 143–179 (2017).

    Article  Google Scholar 

  75. W. J. Moor and J. T. Nash, “Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah,” Econ. Geol. 69, 631–645 (1974).

    Article  Google Scholar 

  76. R. Moritz, F. Ghasban, and B. S. Singer, “Eocene gold ore formation at Muteh, Sanandaj-Sirjan Tectonic Zone, Western Iran: A result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen,” Econ. Geol. 101, 1497–1524 (2006).

    Article  Google Scholar 

  77. N. Moussa, M. C. Boiron, N. V. Grassineau, D. Asael, Y. Fouquet, Gall B. Le, R. Rolet, J. Etoubleau, and C. Delacourt, “Mineralogy, fluid inclusions and stable isotope study of epithermal Au–Ag–Bi–Te mineralization from the SE Afar Rift (Djibouti),” Ore Geol. Rev. 111, 102916 (2019).

    Article  Google Scholar 

  78. C. Munoz and L. Fontbote, “Fluid inclusion and trace element data on the Azulcocha Zn–As–Au) ore deposit, central Peru,” Terra abstr. 3, 413–414 (1991).

    Google Scholar 

  79. J. T. Nash, “Fluid inclusion studies of some gold deposits in Nevada,” U.S. Geol. Survey Prof. Paper 800, (1972).

  80. J. T. Nash and Jr. Cunningham, “Fluid-inclusion studies of the fluorspar and gold deposits, Jamestown district, Colorado,” Econ. Geol. 68, 1247–1262 (1973).

    Article  Google Scholar 

  81. J. T. Nash and T. G. Theodore, “Ore fluids in the porphyry copper deposit at Copper Canyon, Nevada,” Econ. Geol. 66, 385–399 (1971).

    Article  Google Scholar 

  82. V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal physicochemical parameters of natural mineral-forming fluids,” Geochem. Int. 47 (8), 777–802 (2009).

    Article  Google Scholar 

  83. J. R. O’Neil and M. L. Silberman, “Stable isotope relations in epithermal Au-Ag deposits,” Econ. Geol. 69, 902–909 (1974).

    Article  Google Scholar 

  84. J. R. O’Neil, M. L. Silberman, B. P. Fabbi, and C. W. Chesterman, “Stable isotope and chemical relations during mineralization in the Bodie mining district, Mono County, California,” Econ. Geol. 68, 765–784 (1973).

    Article  Google Scholar 

  85. F. Padyar, M. Rahgoshay, A. Tarantola, M. -C. Caumon, and S. M. Pourmoafi, “High f H2f S2 conditions associated with sphalerite in Latala epithermal base and precious metal deposit, Central Iran: Implications for the composition and genesis conditions of sphalerite,” J. Earth Sci. 31, 523–535 (2020).

    Article  Google Scholar 

  86. V. Yu. Prokofiev, “Types of hydrothermal ore-forming systems (from fluid inclusion studies), Geol. Ore Deposits 40 (6), 514–528 (1998).

    Google Scholar 

  87. V. Yu. Prokofiev and V. B. Naumov, “Physicochemical parameters and geochemical features of ore–forming fluids for orogenic gold deposits throughout geological time,” Minerals. 10 (1), 50 (2020).

    Article  Google Scholar 

  88. V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Precamrbian gold deposits,” Geochem. Int. 55 (12), 1047–1065 (2017).

    Article  Google Scholar 

  89. V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Paleozoic gold deposits,” Geochem. Int. 56 (12), 1156–1171 (2018).

    Article  Google Scholar 

  90. V. Yu. Prokofiev, V. B. Naumov, and O. F. Mironova, “Physicochemical parameters and geochemical features of fluids of Mesozoic gold deposits. Geochem. Int. 58 (2), 128–150 (2020).

    Article  Google Scholar 

  91. C. Pudack, W. E. Halter, C. A. Heinrich, and T. Pettke, “Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, Northwest Argentina,” Econ. Geol. 104, 449–477 (2009).

    Article  Google Scholar 

  92. A. S. Radtke, R. O. Rye, and F. W. Dickson, “Geology and stable isotope studies of Carlin gold deposit, Nevada,” Econ. Geol. 75, 641–672 (1980).

    Article  Google Scholar 

  93. T. A. Rivai, K. Yonezu, K. Syafrizai, K. Sanematsu, D. Kusumanto, A. Imai, and A. A. Watanabe, “Low-sulfidation epithermal mineralization in the River Reef Zone, the Poboya Prospect, Central Sulawesi, Indonesia: Vein textures, ore mineralogy, and fluid inclusions,” Res. Geol. 69, 385–401 (2019).

    Article  Google Scholar 

  94. E. Roedder, “Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado,” Econ. Geol. 66, 98–120 (1971).

    Article  Google Scholar 

  95. F. J. Q. Ruiz, La Herradura Ore Deposit: an Orogenic Gold Deposit in Northwestern Mexico, Thesis for the Degree of Master of Sciences (University of Arisona, 2008).

  96. S. Saing, R. Takanashi, and A. Imai, “Fluid inclusion and stable isotope study at the Southeastern Martabe deposit: Purnama, Barani and Horas ore bodies, North Sumatra, Indonesia,” Res. Geol. 66, 127–148 (2016).

    Article  Google Scholar 

  97. J. H. Seo, M. Guillong, and C. A. Heinrich, “Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon,” Econ. Geol. 107, 333–356 (2012).

    Article  Google Scholar 

  98. R. L. Sherlock, R. M. Tosdal, N. J. Lehrman, J. R. Graney, S. Losh, E. C. Jowett, and S. E. Kesler, “Origin of the McLaughlin mine sheeted vein complex: metal zoning, fluid inclusion, and isotopic evidence,” Econ. Geol. 90, 2156–2181 (1995).

    Article  Google Scholar 

  99. T. Shimizu, “Fluid inclusion studies of comb quartz and stibnite at the Hishikari Au–Ag epithermal deposit, Japan,” Res. Geol. 68, 326–335 (2018).

    Article  Google Scholar 

  100. T. Shimizu, H. Matsueda, D. Ishiyama, and O. Matsubaya, “Genesis of epithermal Au–Ag mineralization of the Koryu mine, Hokkaido, Japan,” Econ. Geol. 93, 303–325 (1998).

    Article  Google Scholar 

  101. K. Siahcheshm, A. A. Calagari, and A. Abedini, “Hydrothermal evolution in the Maher-Abad porphyry Cu–Au deposit, SW Birjand, eastern Iran: Evidence from fluid inclusions,” Ore Geol. Rev. 58, 1–13 (2014).

    Article  Google Scholar 

  102. S. F. Simmons, G. Arehart, M. P. Simpson, and J. L. Mauk, “Origin of massive calcite-veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand,” Econ. Geol. 95, 99–112 (2000).

    Article  Google Scholar 

  103. M. P. Simpson and J. L. Mauk, “Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand,” Econ. Geol. 106, 945–973 (2011).

    Article  Google Scholar 

  104. P. G. Spry, “A fluid inclusion and sulfur isotope study of precious and base metal mineralization spatially associated with the Patch and Gold Cup breccia pipes, Central City, Colorado,” Econ. Geol. 82, 1632–1639 (1987).

    Article  Google Scholar 

  105. X. M. Sun, Y. Zhang, D. X. Xiong, W. D. Sun, G. Y. Shi, W. Zhai, and S. W. Wang, “Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China,” Ore Geol. Rev. 36, 235–249 (2009).

    Article  Google Scholar 

  106. X. M. Sun, H. X. Wei, W. Zhai, G. Y. Shi, Y. H. Liang, R. W. Mo, M. X. Han, and X. G. Zhang, “Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China,” Acta Petrol. Sinica 26, 1672–1684 (2010).

    Google Scholar 

  107. X. Sun, H. Wei, W. Zhai, G. Shi, Y. Liang, R. Mo, M. Han, J. Yi, and X. Zhang, “Fluid inclusion geochemistry and Ar–Ar geochronology of the Cenozoic Bangbu orogenic gold deposit, southern Tibet, China,” Ore Geol. Rev. 74, 196–210 (2016).

    Article  Google Scholar 

  108. Imai A. Syafrizal, Y. Motomura, and K. Watanabe, “Characteristics of gold mineralization at the Ciurug vein, Pongkor gold-silver deposits, West Java, Indonesia,” Res. Geol. 55, 225–238 (2005).

    Article  Google Scholar 

  109. B. Taghipour and F. Ahmadnejad, “Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran),” Geologos 21 (1), 31–57 (2015).

    Article  Google Scholar 

  110. R. Takahashi, H. Matsueda, V. M. Okrugin, and S. Ono, “Polymetallic and Au–Ag mineralizations at the Mutnovskoe deposit in South Kamchatka, Russia,” Res. Geol. 56, 141–156 (2006).

    Article  Google Scholar 

  111. R. Takahashi, R. Tagiri, N. J.F. Blamey, A. Imai, Y. Watanabe, and A. Takeuchi, “Characteristics and behavior of hydrothermal fluids for gold mineralization at the Hishikari deposits, Kyushu, Japan,” Res. Geol. 67, 279–299 (2017).

    Article  Google Scholar 

  112. S. F. Tombros, K. St. Seymour, A. E. Williams-Jones, and P. G. Spry, “Later stages of evolution of an epithermal system: Au–Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece,” Mineral. Petrol. 94, 175–194 (2008).

    Article  Google Scholar 

  113. M. Z. Tuakia, R. Takahashi, and A. Imai, “Geological and geochemical characteristics of gold mineralization in the Salu Bulo Prospect, Sulawesi, Indonesia,” Res. Geol. 69 (2), 175–192 (2019).

    Article  Google Scholar 

  114. N. Tuysuz, B. Sadiklar, M. Er, and Z. Yilmaz, “An epithermal gold-silver deposit in the Pontide island arc, Mastra Gumushane, Northeast Turkey,” Econ. Geol. 90, 1301–1309 (1995).

    Article  Google Scholar 

  115. P. G. Vikre, “Fluid-mineral relations in the Comstock lode,” Econ. Geol. 84, 1574–1613 (1989a).

    Article  Google Scholar 

  116. P. G. Vikre, “Ledge formation at the Sandstorm and Kendall gold mines, Goldfield, Nevada,” Econ. Geol. 84, 2115–2138 (1989b).

    Article  Google Scholar 

  117. G. Vivian, R. D. Morton, A. Changkakoti, and J. Gray, “Blackdome Eocene epithermal Ag–Au deposit, British Columbia, Canada – Nature of ore fluids,” Trans. Inst. Min. Metall. 96, Sec. B, B9–B14 (1987).

  118. S. Wallier, R. Rey, K. Kouzmanov, T. Pettke, C. A. Heinrich, S. Leary, G. O’Connor, C. G. Tamas, T. Vennemann, and T. Ullrich, “Magmatic fluids in the breccia-hosted epithermal Au–Ag deposit of Rosia Montana, Romania,” Econ. Geol. 101, 923–954 (2006).

    Article  Google Scholar 

  119. L. A. Walton, Geology and Geochemistry of the Venus Au–Ag–Pb–Zn Deposit, Yukon Territory, Thesis of Master of Science (Alberta, Edmonton, 1987).

  120. D. Wang, X. Bi, H. Lu, R. Hu, X. Wang, and L. Xu, “Fluid and melt inclusion study on mineralized and barren porphyries, Jinshajiang-Red River alkali-rich intrusive belt, and significance to metallogenesis,” J. Geochem. Explor. 184, 28–39 (2018).

    Article  Google Scholar 

  121. J. H. Wang, W. C. Li, K. Y. Wang, G. H. Yin, S. Wu, and W. T. Jiang, “The characteristics and evolution of the ore-forming fluids in the Beiya porphyry Au-polymetallic deposit, western Yunnan,” Acta Petrol. Sinica. 31, 3269–3280 (2015).

    Google Scholar 

  122. I. W. Warmada, B. Lehmann, M. Simandjuntak, and H. S. Hemes, “Fluid inclusion, rare-earth element and stable isotope study of carbonate minerals from the Pongkor epithermal gold-silver deposit, west Java, Indonesia,” Res. Geol. 57, 124–135 (2007).

    Article  Google Scholar 

  123. M. R. Wilson and T. K. Kyser, “Geochemistry of porphyry-hosted Au-Ag deposits in the Little Rocky Mountains, Montana,” Econ. Geol. 83, 1329–1346 (1988).

    Article  Google Scholar 

  124. W. Y. Xu, F. C. Pan, X. M. Qu, Z. Q. Hou, Z. S. Yang, W. S. Chen, D. Yang, and Y. Cui, “Xiongcun, Tibet: A telescoped system of veinlet-disseminated Cu (Au) mineralization and late vein-style Au (Ag)-polymetallic mineralization in a continental collision zone,” Ore Geol. Rev. 36, 174–193 (2009).

    Article  Google Scholar 

  125. X.-W. Xu, X. -P. Cai, Q. -B. Xiao, and S. G. Peters, “Porphyry Cu-Au and associated polymetallic Fe–Cu–Au deposits in the Beiya area, western Yunnan Province, south China,” Ore Geol. Rev. 31, 224–246 (2007).

    Article  Google Scholar 

  126. H. Yilmaz, T. Oyman, G. B. Arehart, A. R. Colakoglu, and Z. Billor, “Low-sulfidation type Au–Ag mineralization at Bergama, Izmir, Turkey,” Ore Geol. Rev. 32, 81–124 (2007).

    Article  Google Scholar 

  127. H. Zamanian, Sh. Rahmani, and R. Zareisahameih, “Fluid inclusion and stable isotope study of the Lubin-Zardeh epithermal Cu–Au deposit in Zanjan Province, NW Iran: Implications for ore genesis,” Ore Geol. Rev. 112, 103014 (2019).

    Article  Google Scholar 

  128. W. Zhai, X. Suna, J. Yi, X. Zhang, R. Mo, F. Zhou, H. Wei, and Q. Zeng, “Geology, geochemistry, and genesis of orogenic gold–antimony mineralization in the Himalayan Orogen, South Tibet, China,” Ore Geol. Rev. 58, 68–90 (2014).

    Article  Google Scholar 

  129. X. Zhang and P. C. Spry, “Petrological, mineralogical, fluid inclusion, and stable isotope studies of the Gies gold-silver telluride deposit, Judith Mountains, Montana,” Econ. Geol. 89, 602–627 (1994).

    Article  Google Scholar 

  130. X. Zhang, B. E. Nesbitt, and K. Muehlenbachs, “Gold mineralization in the Okanagan Valley, southern British Columbia: fluid inclusion and stable isotope studies,” Econ. Geol. 84, 410–424 (1989).

    Article  Google Scholar 

  131. Ch. Zheng, Zh. Zhang, Ch. Wu, and J. Yao, “Genesis of the Ciemas gold deposit and relationship with epithermal deposits in West Java, Indonesia: Constraints from fluid inclusions and stable isotopes,” Acta Geol. Sinica (English edition) 91 (3), 1025–1040 (2017).

    Article  Google Scholar 

  132. F. Zhou, X. M. Sun, W. Zhai, Y. H. Liang, H. X. Wei, R. W. Mo, X. G. Zhang, and J. Z. Yi, “Geochemistry of ore-forming fluid and metallogenic mechanism for Zhemulang gold deposit in southern Tibet, China,” Acta Petrol. Sinica 27, 2775–2785 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.E. Savva, B.B. Damdinov, and T.A. Shishkina for attentive reading the manuscript and providing advice aimed at its improvement.

Funding

This study was carried out under government-financed research projects 121041500228-6 for the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, and research projects 0137-2019-0016 for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Prokofiev or V. B. Naumov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofiev, V.Y., Naumov, V.B. & Mironova, O.F. Physicochemical Parameters and Geochemical Features of Fluids at Cenozoic Gold Deposits. Geochem. Int. 60, 724–747 (2022). https://doi.org/10.1134/S0016702922080067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922080067

Keywords:

Navigation