Skip to main content
Log in

Enthalpies of Formation of Alunite and Natroalunite (According to Calorimetric Data)

  • SHORT COMMUNICATIONS
  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A sample of natural alunite of the composition K0.6Na0.4Al3(SO4)2(OH)6 was studied by powder X-ray diffraction, infrared spectroscopy, electron microprobe, and thermal analysis. The enthalpy of formation of the alunite from elements ∆fH0(298.15 K) = −5149 ± 13 kJ/mol was determined by the method of melt solution calorimetry, using a Setaram (France) Calvet microcalorimeter. The calculated enthalpies and Gibbs energies of formation of the end members of the series alunite KAl3(SO4)2(OH)6 to natroalunite NaAl3(SO4)2(OH)6 are −5164 ± 13 and −4651 ± 13 kJ/mol, respectively, for alunite and − 5127 ± 13 and −4615 ± 13 kJ/mol, respectively, for natroalunite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. C. Arazi and T. G. Krenkel, “Dehydroxylation heat of alunite,” Am. Mineral. 55, 1329–1337 (1970).

    Google Scholar 

  2. P. Bayliss, U. Kolitsch, E. H. Nickel, and A. Pring, “Alunite supergroup: recommended nomenclature,” Mineral. Mag. 74 (5), 919–927 (2010).

    Article  Google Scholar 

  3. K. C. Benison, “Alunite on Mars,” Am. Mineral. 101 (7), 1499–1500 (2016).

    Article  Google Scholar 

  4. K. Bohmhammel, R. Naumann, and F. Paulik, “Thermoanalytical and calorimetric investigations of the formation and decomposition of some alunites,” Thermochim. Acta 121, 109–119 (1987).

    Article  Google Scholar 

  5. G. P. Brophy, E. S. Scott, and R. A. Snellgrove, “Sulfate studies II. Solid solution between alunite and jarosite,” Am. Mineral. 47, 112–126 (1962).

    Google Scholar 

  6. M. H. Carr, Water on Mars (Oxford University Press, New York, 1996).

    Google Scholar 

  7. B. L. Ehlmann, G. A. Swayze, R. E. Milliken, J. J. Wray, J. F. Mustard, G. N. Breit, R. N. Clark, B. Gondet, F. Poulet, J. Calvin, W. M. Carter, W. M. Seelos and K. D. Benzel, “Discovery of alunite in Cross Crater, Terra Sirenum, Mars: Evidence for precipitation from acidic, sulfurous groundwaters on the margin of a paleolake,” Am. Mineral. 101, 1527–1542 (2016).

    Article  Google Scholar 

  8. R. L. Frost and D. L. Wain, “Near-infrared spectroscopy of natural alunites,” Spectrochim. Acta Part A 71, 490–495 (2008a).

    Article  Google Scholar 

  9. R. L. Frost and D. L. Wain, “A thermogravimetric and infrared emission spectroscopic study of alunite,” J. Therm. Anal. Calorim. 91, 267–274 (2008b).

    Article  Google Scholar 

  10. R. L. Frost, D. L. Wain, R.-A. Wills, A. Musemeci, and W. Martens, “A thermogravimetric study of heat of alunitethe alunites of sodium, potassium and ammonium,” Thermochim. Acta 443, 56–61 (2006a).

    Article  Google Scholar 

  11. R. L. Frost, R.-A. Wills, M. L. Weier, W. Martens, and J. T. Kloprogge, “A Raman spectroscopic study of alunites,” J. Mol. Struct. 785 (1–3), 123–132 (2006b).

    Article  Google Scholar 

  12. S. Gaboreau and P. Vieillard, “Prediction of Gibbs free energies of formation of minerals of the alunite supergroup,” Geochim. Cosmochim. Acta 68 (16), 3307–3316 (2004).

    Article  Google Scholar 

  13. B. S. Hemingway and R. A. Robie, “Heat capacity and enthalpy of formation of synthetic alunite,” U.S. Geol. Surv. Open-file Report 94688 (1995)

  14. V. P. Ivanova, B. K. Kasatov, T. N. Krasavina, and E. L. Rozinova, Thermal Analysis of Minerals and Rocks (Nedra, Leningrad, 1974) [in Russian].

    Google Scholar 

  15. F. Jones, “Crystallization of jarosite with variable Al3+ content: the transition to alunite,” Minerals 7 (6), 90–105 (2017).

    Article  Google Scholar 

  16. K. K. Kelley, C. H. Shomate, F. E. Young, B. F. Naylor, A. E. Salo, and E. H. Huffman, “Thermodynamic properties of ammonium and potassium alums and related substances, with reference to extraction of alumina from clay and alunite,” U.S. Bureau Mines Tech. Paper 688, (1947).

  17. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  18. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites – heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  19. A. R. Kotel’nikov, Yu K. Kabalov, T. N. Zezyulya, L. V. Mel’chakova, and L. P. Ogorodova, “Experimental study of celestine–barite solid solution,” Geochem. Int. 38 (12), 1181–1187 (2000).

    Google Scholar 

  20. F. Küçük and K. Yildiz, “The decomposition kinetics of mechanically activated alunite ore in air atmosphere by thermogravimetry,” Thermochim. Acta 448, 107–110 (2006).

    Article  Google Scholar 

  21. C. Lerouge, A. Kunov, C. Fléhoc, S. Georgieva, A. Hikov, J. L. Lescuyer, R. Petrunov, and N. Velinova, “Constraints of stable isotopes on the origin of alunite from advanced argillic alteration systems in Bulgaria,” J. Geochem. Explor. 90 (3), 166–182 (2006).

    Article  Google Scholar 

  22. J. Majzlan, S. Speziale, T. S. Duffy, and P. C. Burns, “Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6,” Phys. Chem. Miner. 33, 567–573 (2006).

    Article  Google Scholar 

  23. N. Maubec, A. Lahfid, C. Lerouge, G. Wille, and K. Michel, “Characterization of alunite supergroup mineralsby Raman spectroscopy,” Spectrochim. Acta Part A 96, 925–939 (2012).

    Article  Google Scholar 

  24. P. J. Murphy, A. M.L. Smith, K. A. Hudson-Edwards, W. E. Dubbin, and K. Wright, “Raman and spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+ and V3+ at the B site,” Can. Mineral. 47, 663–681 (2009).

    Article  Google Scholar 

  25. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  26. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” Russ. J. Phys. Chem A 85 (9), 1492–1494 (2011).

    Article  Google Scholar 

  27. R. L. Parker, “Isomorphous substitution in natural and synthetic alunite,” Am. Mineral. 47, 127–136 (1962).

    Google Scholar 

  28. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

  29. A. V. Sergeeva, “Infra-red spectra of alunite group minerals formed on thermal fields,” Zh. Prikl. Spektrosk. 86 (3), 333–340 (2019).

    Google Scholar 

  30. C. J. Serna, C. P. Cortina, and J. V.G. Ramos, “Infrared and Raman study of alunite-jarosite compounds,” Spectrochim. Acta Part A 42, 729–734 (1986).

    Article  Google Scholar 

  31. H. S. Spratt, L. Rintoul, M. Avdeev, and W. N. Martens, “The crystal structure and vibrational spectroscopy of jarosite and alunite minerals,” Am. Mineral. 98, 1633–1643 (2013).

    Article  Google Scholar 

  32. R. E. Stoffregen and C. N. Alpers, “Observations on the unit-cell dimensions, H2O contents, and δD values of natural and synthetic alunite,” Am. Mineral. 77, 1092–1098 (1992).

    Google Scholar 

  33. R. E. Stoffregen and G. L. Cygan, “An experimental study of Na–K exchange between alunite and aqueous sulfate solutions,” Am. Mineral. 75, 209–220 (1990).

    Google Scholar 

  34. R. E. Stoffregen, C. N. Alpers, and J. L. Jambor, “Alunite–jarosite crystallography, thermodynamics and geochronology,” Mineral. Geochem. 40, 453–479 (2000).

    Article  Google Scholar 

  35. M. Toumi and A. Tlili, “Rietveld refinement and vibrational spectroscopic study of alunite from El Gnater, Central Tunisia,” Russ. J. Inorg. Chem. 53 (12), 1845–1853 (2008).

    Article  Google Scholar 

  36. A. Valero, A. Valero, and P. Vieillard, “The thermodynamic properties of the upper continental crust: Exergy, Gibbs free energy and enthalpy,” Energy 41 (1), 121–127 (2012).

    Article  Google Scholar 

  37. M. Zema, A. M. Callegari, C. Tarantino, E. Gasparini, and P. Ghigna, “Thermal expansion of alunite up to dehydroxylation and collapse of the crystal structure,” Mineral. Mag. 76 (3), 613–623 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The STOE-STADI MP powder X-ray diffractometer, FSM-1201 Fourier-transform spectrometer, Q-1500D derivatograph, and Setaram (France) Tian–Calvet microcalorometer used in this study are installed at the Faculty of Geology, Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Gritsenko, Y.D., Vigasina, M.F. et al. Enthalpies of Formation of Alunite and Natroalunite (According to Calorimetric Data). Geochem. Int. 60, 596–602 (2022). https://doi.org/10.1134/S0016702922060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922060052

Keywords:

Navigation