Skip to main content
Log in

Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. I. Mean Concentrations of 45 Elements in the Main Geodynamic Settings of the Earth

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Published data on the composition of mineral-hosted inclusions and quenched glasses of rocks were used to estimate the mean concentrations of 45 volatile, trace, and ore elements in silicate igneous melts from the main geodynamic settings of the Earth and in natural fluids. The following geodynamic settings were distinguished according to the conditions of formation and evolution of the igneous melts: (I) oceanic spreading zones (mid-oceanic ridges), (II) oceanic mantle-plume zones (oceanic islands and lava plateaus); (III and IV) subduction-related settings (III is island-arc zones, and IV is active continental margins); (V) continental rifts and hotspot zones; and (VI) backarc spreading basins related to subduction. The contents of the elements in basic and felsic melts were compared in settings III, IV and V. It was shown that differences in the enrichment factors of ore elements between the geodynamic settings could be caused by variations in the contribution of fluids to element transport and accumulation. Ratios of element contents in each of the geodynamic environments to the global mean values were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. A. Ancellin, P. Samaniego, I. Vlastelic, F. Nauret, M. Gannoun, and S. Hidalgo, “Across-versus along-arc Sr–Nd–Pb isotope variations in the Ecuadorian volcanic arc,” Geochem., Geophys., Geosyst. 18, 1163–1188 (2017).

    Article  Google Scholar 

  2. A. Audetat, “The metal content of magmatic–hydrothermal fluids and its relationship to mineralization potential,” Econ. Geol. 114, 1033–1056 (2019).

    Article  Google Scholar 

  3. A. Audetat and D. H. Zhang, “Abundances of S, Ga, Ge, Cd, In, Tl and 32 other major to trace elements in high-temperature (350–700°C) magmatic-hydrothermal fluids,” Ore Geol. Rev. 109, 630–642 (2019).

    Article  Google Scholar 

  4. A. Audetat, L. Zhang, and H. W. Ni, “Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and consequences for the composition of melt inclusions,” Geochim. Cosmochim. Acta 243, 99–115 (2018).

    Article  Google Scholar 

  5. T. R. Benson, M. A. Coble, J. J. Rytuba, and G. A. Mahood, “Lithium enrichment in intracontinental rhyolite magmas leads to Li deposit in caldera basins,” Nature Commun. 8, 1–9 (2017).

    Article  Google Scholar 

  6. G. V. Berni, C. A. Heinrich, M. Walle, and V. J. Wall, “Fluid geochemistry of the Serra Pelada Au-Pd–Pt deposit, Carajas, Brazil: Exceptional metal enrichment caused by deep reaching hydrothermal oxidation,” Ore Geol. Rev. 111, 102991 (2019).

    Article  Google Scholar 

  7. G. V.Berni, T. Wagner, and T. Fusswinkel, “From a F-rich granite to a NYF pegmatite: Magmatic-hydrothermal fluid evolution of the Kymi topaz granite stock, SE Finland,” Lithos 364–365, 105538 (2020).

    Article  Google Scholar 

  8. P. A. Brandl, M. Regelous, C. Beier, H. St. C. O’Neill, O. Nebel, and K. M. Haase, “The timescales of magma evolution at mid-ocean ridges,” Lithos 240–243, 49–68 (2016).

    Article  Google Scholar 

  9. M. Burisch, B. F. Walter, M. Walle, and G. Markl, “Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: Insights from trace element systematic of individual fluid inclusions,” Chem. Geol. 429, 44–50 (2016).

    Article  Google Scholar 

  10. H. Catchpole, K. Kouzmanov, B. Putlitz, J. H. Seo, and L. Fontbote, “Zoned base metal mineralization in a porphyry system: Origin and evolution of mineralizing fluids in the Morococha district, Peru,” Econ. Geol. 110, 39–71 (2015).

    Article  Google Scholar 

  11. K. J. Chamberlain, C. J. N. Wilson, P. J. Wallace, and M. A. Millet, “Micro-analytical perspectives on the Bishop Tuff and its magma chamber,” J. Petrol. 56, 605–640 (2015).

    Article  Google Scholar 

  12. K. J. Chamberlain, J. Barclay, K. Preece, R. J. Brown, J. P. Davidson, and EIMF, “Origin and evolution of silicic magmas at ocean islands: Perspectives from a zoned fall deposit on Ascension Island, South Atlantic,” J. Volcanol. Geotherm. Res. 327, 349–360 (2016).

    Article  Google Scholar 

  13. K. J. Chamberlain, J. Barclay, K. J. Preece, R. J. Brown, and J. P. Davidson, “Lower crustal heterogeneity and fractional crystallization control evolution of small-volume magma batches at ocean island volcanoes (Ascension Island, South Atlantic),” J. Petrol. 60, 1489–1522 (2019).

    Article  Google Scholar 

  14. J. Chang, J. W. Li, and A. Audetat, “Formation and evolution of multistage magmatic-hydrothermal fluids at the Yulong porphyry Cu-Mo deposit, eastern Tibet: Insights from LA-ICP-MS analysis of fluid inclusions,” Geochim. Cosmochim. Acta 232, 181–205 (2018).

    Article  Google Scholar 

  15. G. X. Chi, H. X. Chu, D. Petts, E. Potter, S. Jackson, and A. Williams-Jones, “Uranium-rich diagenetic fluids provide the key to unconformity-related uranium mineralization in the Athabasca Basin,” Scientific Reports. 9 (5530), 1–10 (2019).

    Article  Google Scholar 

  16. G. F. Cooper, C. J. N. Wilson, M. A. Millet, and J. A. Baker, “Generation and rejuvenation of a supervolcanic magmatic system: a case study from Mangakino volcanic centre,” New Zealand. J. Petrol. 57, 1135–1170 (2016).

    Article  Google Scholar 

  17. L. B. Damdinova, B. B. Damdinov, and N. V. Bryanskii, “Processes of formation of fluorite-leucophane-melinophane-eudidymite ores of the Ermakovka F–Be deposit (western Transbaikalia),” Russ. Geol. Geophys. 59, 1022–1038 (2018).

    Article  Google Scholar 

  18. S. de Graaf, V. Luders, D. A. Banks, M. Sosnicka, J. J. G. Reijmer, H. Kaden, and H. B. Vonhof, “Fluid evolution and ore deposition in the Harz Mountains revisited: isotope and crush-leach analyses of fluid inclusions,” Mineral. Dep. 55, 47–62 (2020).

    Article  Google Scholar 

  19. S. Essarraj, M.-C. Boiron, M. Cathelineau, A. Tarantola, M. Leisen, P. Boulvais, and L. Maacha, “Basinal brines at the origin of the Imiter Ag-Hg deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS data on fluid inclusions, halogen signatures, and stable isotopes (H, C, O),” Econ. Geol. 111, 1753–1781 (2016).

    Article  Google Scholar 

  20. A. M. Fiedrich, O. Laurent, C. A. Heinrich, and O. Bachmann, “Melt and fluid evolution in an upper-crustal magma reservoir, preserved by inclusions in juvenile clasts from Kos Plateau Tuff, Aegean Arc, Greece,” Geochim. Cosmochim. Acta 280, 237–262 (2020).

    Article  Google Scholar 

  21. F. Forni, O. Bachmann, S. Mollo, G. De Astis, S. E. Gelman, and B. S. Ellis, “The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy),” Earth Planet. Sci. Lett. 449, 259–271 (2016).

    Article  Google Scholar 

  22. F. Forni, E. Petricca, O. Bachmann, S. Mollo, G. De Astis, and M. Piochi, “The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy),” Contrib. Mineral. Petrol. 173, 1–18 (2018).

    Article  Google Scholar 

  23. T. Fusswinkel, T. Wagner, and G. Sakellaris, “Fluid evolution of Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis,” Chem. Geol. 450, 96–121 (2017).

    Article  Google Scholar 

  24. S. D. Gomes, S. Berger, R. C. Figueiredo e Silva, S. G. Hagemann, C. A. Rosiere, D. A. Banks, L. M. Lobato, and A. S. Hensler, “Oxide chemistry and fluid inclusion constraints on the formation of itabirite-hosted iron ore deposits at the eastern border of the southern Espinhaco Range, Brazil,” Ore Geol. Rev. 95, 821–848 (2018).

    Article  Google Scholar 

  25. M. Haber, S. Jelen, L. Mato, and V. Kovalenker, “Modelling of mineral-forming processes of the Banska Stiavnica epithermal deposit, Western Carpathians, Slovak Republic,” Proceeding of the Ninth Quadrennial IAGOD Symposium, 1998 (Stuttgart., 1998), pp. 183–203.

  26. M. E. Hartley, E. Bali, J. Maclennan, D. A. Neave, and S. A. Halldorsson, “Melt inclusion constraints on petrogenesis of the 2014–2015 Holuhraun eruption, Iceland,” Contrib. Mineral. Petrol. 173, 1–23 (2018).

    Article  Google Scholar 

  27. E. H. Hauri, J. Maclennan, D. McKenzie, K. Gronvold, N. Oskarsson, and N. Shimizu, “CO2 content beneath northern Iceland and the variability of mantle carbon,” Geology 46, 55–58 (2018).

    Article  Google Scholar 

  28. J. W. Hedenquist and J. B. Lowenstern, “The role of magmas in the formation of hydrothermal ore deposits,” Nature 370, 519–527 (1994).

    Article  Google Scholar 

  29. S. K. Hennings, T. Wagner, P. Ulmer, and C. A. Heinrich, “Fluid evolution of the Monte Mattoni mafic complex, Adamello batholith, northern Italy: Insights from fluid inclusion analysis and thermodynamic modeling,” J. Petrol. 58, 1645–1670 (2017).

    Article  Google Scholar 

  30. N. Hulsbosh, M.-Ch. Boiron, S. Dewaele, and P. Muchez, “Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda),” Geochim. Cosmochim. Acta. 175, 299–318 (2016).

    Article  Google Scholar 

  31. N. Hulsbosch, M.-Ch. Boiron, R. Thomas, J. Daele Van, S. Dewaele, and P. Muchez, “Evaluation of the petrogenetic significance of melt inclusions in pegmatitic schorl-dranite from graphic tourmaline-quartz assemblages: Application of LA-ICP-QMS analyses and volume ratio calculations,” Geochim. Cosmochim. Acta. 244, 308–335 (2018).

    Article  Google Scholar 

  32. N. C. Hurtig, J. J. Hanley, and A. P. Gysi, “The role of hydrocarbons in ore formation at the Pillara Mississippi Valley-type Zn–Pb deposit, Canning Basin, Western Australia,” Ore Geol. Rev. 102, 875–893 (2018).

    Article  Google Scholar 

  33. A. Husen, V. S. Kamenetsky, J. L. Everard, and M. B. Kamenetsky, “Transition from ultra-enriched to ultra-depleted primary MORB melts in a single volcanic suite (Macquarie Island, SW Pacific): Implications for mantle source, melting process,” Geochim. Cosmochim. Acta 185, 112–128 (2016).

    Article  Google Scholar 

  34. F. Iddon and M. Edmonds, “Volatile-rich magmas distributed through the upper crust in the Main Ethiopian Rift,” Geochemistry, Geophysics, Geosystems. 20 (6), 1–24 (2020).

    Google Scholar 

  35. F. E. Jenner, E. H. Hauri, E. S. Bullock, S. Konig, R. J. Arculus, J. A. Mavrogenes, N. Mikkelson, and C. Goddard, “The competing effects of sulfide saturation versus degassing on the behavior of the chalcophile elements during the differentiation of hydrous melts,” Geochem., Geophys., Geosyst. 16, 1490–1507 (2015).

    Article  Google Scholar 

  36. M. R. Jones, V. D. Wanless, S. A. Soule, M. D. Kurz, E. Mittelstaedt, D. J. Fornari, J. Curtice, F. Klein, V. Le Roux, H. Brodsky, S. Peron, and D. M. Schwartz, “New constraints on mantle carbon from Mid-Atlantic Ridge popping rocks,” Earth Planet. Sci. Lett. 511, 67–75 (2019).

    Article  Google Scholar 

  37. M. Keim, B. F. Walter, B. F. Neumann, S. Kreiss, R. Bayerl, and G. Markl, “Polyphase enrichment and redistribution processes in silver-rich mineral associations of the hydrothermal fluorite-barite-(Ag–Cu) Clara deposit, SW Germany,” Mineral. Dep. 54, 155–174 (2019).

    Article  Google Scholar 

  38. V. A. Kovalenker, “Ore-forming epithermal gold–silver deposits: concepts, reality, and models,” Problems of Ore Geology, Petrology, Mineralogy, and Geochemistry (IGEM RAS, Moscow, 2004), pp. 160–183 [in Russian].

    Google Scholar 

  39. V. A. Kovalenker, V. Yu. Prokof’ev, S. V. Kozerenko, O. F. Mironova, N. N. Kolpakova, and M. A. Zalibekyan, “Mineralizing fluid composition and genesis of gold–sulfide-telluride mineralization at the Megradzor deposit: evidence from fluid inclusion,” Geochem. Int., 39 (2), 145–159 (2001).

    Google Scholar 

  40. V. A. Kovalenker, G. D. Kiseleva, T. L. Krylova, and O. V. Andreeva, “Mineralogy and ore formation conditions of the Bugdaya Au-bearing W–Mo porphyry deposit, Eastern Transbaikal Region, Russia,” Geol. Ore Deposits 53, 93–125 (2011).

    Article  Google Scholar 

  41. V. A. Kovalenker, S. S. Abramov, G. D. Kiseleva, T. L. Krylova, Yu. I. Yazykova, and N. S. Bortnikov, “The large Bystrinskoe Cu–Au–Fe deposit (Eastern Trans-Baikal-Region): Russia’s first example of a skarn-porphyry ore-forming system related to adakite,” Dokl. Earth Sci. 468 (2), 566–570 (2016).

    Article  Google Scholar 

  42. M. Kurosawa, K. Sasa, K.-C. Shin, and S. Ishii, “Trace-element compositions and Br/Cl ratios of fluid inclusions in the Tsushima granite, Japan: significance for formation of granite-derived fluids,” Geochim. Cosmochim. Acta 182, 216–239 (2016).

    Article  Google Scholar 

  43. J. L. Lang and T. Baker, “Intrusion-related gold systems: the present level of understanding,” Mineral. Dep. 36, 477–489 (2001).

    Article  Google Scholar 

  44. H. Legros, A. Richard, A. Tarantola, K. Kouzmanov, J. Mercadier, T. Vennemann, C. Marignac, M. Cuney, R. C. Wang, N. Charles, L. Beilly, and M. Y. Lespinasse, “Multiple fluid involved in granite-related W-Sn deposits from the world-class Jiangxi province (China),” Chem. Geol. 508, 92–115 (2019).

    Article  Google Scholar 

  45. M. Le Voyer, E. H. Hauri, E. Cottrell, K. A. Kelley, V. J. M. Salters, C. H. Langmuir, D. R. Hilton, P. H. Barry, and E. Furi, “Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system,” Geochem., Geophys., Geosyst. 20, 1387–1424 (2019).

    Article  Google Scholar 

  46. W. T. Li, A. Audetat, and J. Zhang, “The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: evidence from La-ICP-MS analysis of fluid inclusions,” Ore Geol. Rev. 67, 264–278 (2015).

    Article  Google Scholar 

  47. X. H. Li, Z. G. Zeng, H. X. Yang, X. B. Yin, X. Y. Wang, S. A. Chen, Y. Ma, and K. Guo, “Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: Implications for petrogenesis and variable subducted sediment component injection,” Geol. J. 54, 1160–1189 (2018).

    Article  Google Scholar 

  48. H. Q. Liu, X. W. Bi, H. Z. Lu, R. H. Hu, T. G. Lan, X. S. Wang, and M. L. Huang “Nature and evolution of fluid inclusions in the Cenozoic Beiya gold deposit, SW China,” J. Asian Earth Sci. 161, 35–56 (2018).

    Article  Google Scholar 

  49. M. W. Loewen and I. N. Bindeman, “Oxygen isotope and trace element evidence for three-stage petrogenesis of the youngest episode (260–79 ka) of Yellowstone rhyolitic volcanism,” Contrib. Mineral. Petrol. 170 (4), 1–25 (2015).

    Article  Google Scholar 

  50. S. Mallick, V. J. M. Salters, and C. H. Langmuir, “Geochemical variability along the northern East Pacific Rise: Coincident source composition and ridge segmentation,” Geochem., Geophys., Geosyst. 20, 1889–1911 (2019).

    Article  Google Scholar 

  51. J. Mao, F. Pirajno, B. Lehmann, M. Luo, and A. Berzina, “Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings,” J. Asian Earth Sci. 79, 576–584 (2014).

    Article  Google Scholar 

  52. P. Martz, J. Mercadier, M. Cathelineau, M. Ch. Boiron, D. Quirt, A. Doney, O. Gerbeaud, E. De Wally, and P. Ledru, “Formation of U-rich mineralizing fluids through basinal brine migration within basement-hosted shear zones: A large-scale study of the fluid chemistry around the unconformity-related Cigar Lake U deposit (Saskatchewan, Canada),” Chem. Geol. 508, 116–143 (2019).

    Article  Google Scholar 

  53. M. F. Marquez-Zavalia and C. A. Heinrich, “Fluid evolution in a volcanic-hosted epithermal carbonate-base metal-gold vein system: Alto da la Blenda, Farallon Negro, Argentina,” Mineral. Dep. 51, 873–902 (2016).

    Article  Google Scholar 

  54. H. R. Marschall, V. D. Wanless, N. Shimizu, P. A. E. Pogge von Strandmann, T. Elliott, and B. D. Monteleone, “The boron and lithium isotopic composition of mid-ocean ridge and the mantle,” Geochim. Cosmochim. Acta 207, 102–138 (2017).

    Article  Google Scholar 

  55. B. Mehrabi, B. Karimshahraki, D. Banks, A. Boyce, and B. W. D. Yardley, “Hydrothermal iron oxide-Cu-Au (IOCG) mineralization at the Jalal-Abad deposit, northwestern Zarand, Iran,” Ore Geol. Rev. 106, 300–317 (2019).

    Article  Google Scholar 

  56. C. N. Mercer, A. H. Hofstra, T. I. Todorov, J. Roberge, A. Burgisser, D. T. Adams, and M. Cosca, “Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado,” J. Petrol. 56, 645–679 (2015).

    Article  Google Scholar 

  57. T. P. Mernagh and J. Mavrogenes “Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit,” Chem. Geol. 508, 210–224 (2019).

    Article  Google Scholar 

  58. W. G. R. Miller, J. MacLennan, O. Shorttle, G. A. Gaetani, V. Le Roux, and F. Klein, “Estimating the carbon content of the deep mantle with Icelandic melt inclusions,” Earth Planet. Sci. Lett. 523, 115699 (2019).

    Article  Google Scholar 

  59. M. J. Morales, R. C. Figueiredo e Silva, L. M. Lobato, S. D. Gomes, C. C. C. O. Gomes, and D. A. Banks, “Metal source and fluid-rock interaction in the Archean BIF-hosted Lamego gold mineralization: Microthermometric and LA-ICP-MS analyses of fluid inclusions in quartz veins, Rio das Velhas greenstone belt, Brazil,” Ore Geol. Rev. 72, 510–531 (2016).

    Article  Google Scholar 

  60. D. Muller and P. Forrestal, “The shoshonite porphyry Cu-Au association at Bajo de la Alumbdrera, Catamarca Province, Argentina,” Mineral. Petrol. 64, 47–64 (1998).

    Article  Google Scholar 

  61. J. E. Mungall, “Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits,” Geology 30, 915–918 (2002).

    Article  Google Scholar 

  62. M. L. Myers, P. J. Wallace, C. J. N. Wilson, B. K. Morter, and E. J. Swallow, “Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption,” Yellowstone. Earth Planet. Sci. Lett. 451, 285–297 (2016).

    Article  Google Scholar 

  63. M. L. Myers, P. J. Wallace, and C. J. N. Wilson, “Inferring magma ascent timescales and reconstructing conduit processes in explosive rhyolitic eruptions using diffusive losses of hydrogen from melt inclusions,” J. Volcanol. Geotherm. Res. 369, 95–112 (2019).

    Article  Google Scholar 

  64. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–987 (2004).

    Google Scholar 

  65. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 48 (12), 1185–1207 (2010).

    Article  Google Scholar 

  66. V. B. Naumov, V. A. Kovalenker, V. Yu. Prokofiev, M. L. Tolstykh, G. Damian, and F. Damian, “Unusual acid melts in the area of the unique Rosia Montana gold deposit Apuseni Mountains, Romania: Evidence from inclusions in quartz,” Geochem. Int. 51 (11), 876–888 (2013).

    Article  Google Scholar 

  67. V. B. Naumov, V. A. Kovalenker, G. Damian, S. S. Abramov, M. L. Tolstykh, and V. Yu. Prokofiev, “Origin of the Laleaua Alba dacite (Baia Sprie volcanic area and Au-Pb-Zn ore district, Romania): evidence from study of melt inclusions,” Central Europ. Geol. 57 (1), 83–112 (2014).

    Article  Google Scholar 

  68. V. B. Naumov, A. V. Girnis, V. A. Dorofeeva and V. A. Kovalenker, “Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals,” Geol. Ore Deposits 58, 327–343 (2016).

    Article  Google Scholar 

  69. V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts,” Geochem. Int. 55 (7), 629–653 (2017).

    Article  Google Scholar 

  70. V. B. Naumov, V. A. Dorofeeva, M. L. Tolstykh, A. V. Girnis, and V. V. Yarmolyuk, “Composition and geochemical specifics of magmatic melts in Kamchatka: Evidence from melt inclusions and quenched glasses of rocks,” Geochem. Int. 58 (3), 271–290 (2020).

    Article  Google Scholar 

  71. H. G. Ouyang, J. W. Mao, and R. H. Hu, “Geochemistry and crystallization conditions of magmas related to porphyry Mo mineralization in northeastern China,” Econ. Geol. 115, 79–100 (2020).

    Article  Google Scholar 

  72. J. Y. Pan, P. Ni, and R. C. Wang, “Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions,” Am. Mineral. 104, 1092–1116 (2019).

    Article  Google Scholar 

  73. M. A. Pelch, M. S. Appold, P. Emsbo, and R. J. Bodnar, “Constraints from fluid inclusion compositions on the origin of Mississippi Valley-type mineralization in the Illinois-Kentucky district,” Econ. Geol. 110, 787–808 (2015).

    Article  Google Scholar 

  74. M. V. Portnyagin, V. V. Ponomareva, E. A. Zelenin, L. I. Bazanova, M. M. Pevzner, A. A. Plechova, A. N. Rogozin, and D. Garbe-Schonberg, “TephraKam: Geochemical database of glass compositions in tephra and welded tuffs from the Kamchatka volcanic arc (NW Pacific),” Earth System Science Data. 12(1), 469–486 (2020).

    Article  Google Scholar 

  75. V. Yu. Prokofiev, A. A. Kalinin, K. V. Lobanov, D. A. Banks, A. A. Borovikov and M. V. Chicherov, “Composition of fluids responsible for gold mineralization in the Pechenga Structure of the Pechenga–Imandra–Varzuga Greenstone Belt, Kola Peninsula, Russia,” Geol. Ore Deposits 60, 277–299 (2018).

    Article  Google Scholar 

  76. V. Yu. Prokofiev, D. A. Banks, K. V. Lobanov, S. L. Selektor, V. A. Milichko, N. N. Akinfiev, A. A. Borovikov, V. L. Luders, and M. V. Chicherov, “Exceptional concentrations of gold nanoparticles in 1,7 Ga fluid inclusions from the Kola superdeep borehole, northwest Russia,” Scientific Reports. 10, 1108 (2020).

    Article  Google Scholar 

  77. D. J. Rasmussen, P. R. Kyle, P. J. Wallace, K. W. W. Sims, G. A. Gaetani, and E. H. Phillips, “Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions,” J. Petrol. 58, 841–862 (2017).

    Google Scholar 

  78. A. Richard, M. Cathelineau, M.-C. Boiron, J. Mercadier, D. A. Banks, and M. Cuney, “Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada),” Mineral. Dep. 51, 249–270 (2016).

    Article  Google Scholar 

  79. J. P. Richards, “Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation,” Econ. Geol. 98, 1515-1533 (2003).

    Article  Google Scholar 

  80. J. P. Richards and R. Kerrich, “The Porgera gold mine, Papua New Guinea: Magmatic hydrothermal to epithermal evolution of an alkali-type precious metal deposit,” Econ. Geol. 88, 1017–1052 (1993).

    Article  Google Scholar 

  81. R. L. Rudnick and S. Gao, “Composition of the continental crust,” Treatise on Geochemistry 4, 1–51 (2014).

    Google Scholar 

  82. D. C. S. Ruth, E. Cottrell, J. A. Cortes, K. A. Kelley, and E. S. Calder, “From passive degassing to violent Strombolian eruption: the case of the 2008 eruption of Llaima volcano, Chile,” J. Petrol. 57, 1833–1864 (2016).

    Google Scholar 

  83. Yu. G. Safonov, V. V. Popov, A. V. Volkov, and B. I. Gongalsky, “Geodynamic–geotectonic settings of the formation of large gold concentrations,” in Large and Superlarge Mineral Deposits, (IGEM RAN, Moscow, 2006), Vol. 2, pp. 97–142 [in Russian].

    Google Scholar 

  84. F. J. Sawkins “Metal deposits in relation to plate tectonics,” Mineral and Rocks 17, 461 (1990).

    Google Scholar 

  85. F. Schiavi, A. Rosciglione, H. Kitagawa, K. Kobayashi, E. Nakamura, P. M. Nuccio, L. Ottolni, A. Paonita, and R. Vannucci, “Geochemical heterogeneities in magma beneath Mount Etna recorded by 2001–2006 melt inclusions,” Geochem., Geophys., Geosyst. 16, 2109–2126 (2015).

    Article  Google Scholar 

  86. J. C. Schindlbeck, S. Kutterolf, A. Freundt, S. Eisele, K. L. Wang, and M. Frische, “Miocene to Holocene marine tephrostratigraphy offshore northern Central America and southern Mexico: Pulsed activity of known volcanic complexes,” Geochemistry, Geophysics, Geosystems. 19, 4143–4173 (2019).

    Article  Google Scholar 

  87. C. Schindler, S. G. Hagemann, D. Banks, T. Mernagh, and A. C. Harris, “Magmatic hydrothermal fluids at the sedimentary rock-hosted, intrusion-related Telfer gold-copper deposit, Paterson orogen, Western Australia: Pressure-temperature-composition constraints on the ore-forming fluids,” Econ. Geol. 111, 1099–1126 (2016).

    Article  Google Scholar 

  88. T. U. Schlegel, T. Wagner, M. Walle, and C. A. Heinrich, “Hematite breccia-hosted iron oxide copper-gold deposits require magmatic fluid components exposed to atmospheric oxidation: Evidence from Prominent Hill, Gawler Craton, South Australia,” Econ. Geol. 113, 597–644 (2018).

    Article  Google Scholar 

  89. J. H. Seo, B. C. Yoo, I. M. Villa, J. H. Lee, T. Lee, C. Kim, and K. J. Moon, “Magmatic-hydrothermal processes in Sangdong W–Mo deposit, Korea: Study of fluid inclusions and 39Ar–40Ar geochronology,” Ore Geol. Rev. 91, 316–334 (2017).

    Article  Google Scholar 

  90. K. L. Shelton, B. D. Cavender, L. E. Perry, J. D. Schiffbauer, M. S. Appold, I. Burstein, and D. A. Fike, “Stable isotope and fluid inclusion studies of early Zn–Cu–(Ni–Co)-rich ores, lower ore zone of Brushy Creek mine, Viburnum Trend MVT district, Missouri, USA.: Products of multiple sulfur sources and metal-specific fluids,” Ore Geol. Rev. 118, 103358 (2020).

    Article  Google Scholar 

  91. K. Shimizu, A. E. Saal, C. E. Myers, A. N. Nagle, E. H. Hauri, D. W. Forsyth, V. S. Kamenetsky, and Y. L. Niu, “Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle,” Geochim. Cosmochim. Acta 176, 44–80 (2016).

    Article  Google Scholar 

  92. K. Shimizu, A. E. Saal, E. H. Hauri, M. R. Perfit, and R. Hekinian “Evaluating the roles of melt-rock interaction and partial degassing on the CO2/Ba ratios of MORB: Implications for the CO2 budget in the Earth’s depleted upper mantle,” Geochim. Cosmochim. Acta 260, 29–48 (2019).

    Article  Google Scholar 

  93. Q. H. Shu, Z. S. Chang, J. Hammerli, Y. Lai, and J. M. Huizenga, “Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions,” Econ. Geol. 112, 1441–1460 (2017).

    Article  Google Scholar 

  94. R. H. Sillitoe, “Relation of metal provinces in western America to subduction of oceanic lithosphere,” Geol. Soc. Am. Bull. 83, 813–818 (1972).

    Article  Google Scholar 

  95. R. H. Sillitoe, “Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region,” Aust. J. Earth Sci. 44, 373–388 (1997).

    Article  Google Scholar 

  96. R. Sillitoe and J. Hedenquist, “Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits,” SEG Special Publication. 10, 315–343 (2003).

    Google Scholar 

  97. E. J. Swallow, C. J. N. Wilson, M. L. Myers, P. J. Wallace, K. S. Collins, and E. G. Smith, “Evacuation of multiple magma bodies and onset of caldera collapse in a supereruption, captured in glass and mineral compositions,” Contrib. Mineral. Petrol. 173, 1–22 (2018).

    Article  Google Scholar 

  98. D. Szymanowski, B. S. Ellis, O. Bachmann, M. Guillong, and W. M. Phillips, “Bridging basalts and rhyolites in the Yellowstone-Snake River Plain volcanic province: The elusive intermadiate step,” Earth Planet. Sci. Lett. 415, 80–89 (2015).

    Article  Google Scholar 

  99. S. Tamburrino, D. D. Insinga, N. Pelosi, C. Kissel, C. Laj, L. Capotondi, and M. Sprovieri, “Tephrochronology of ~70 ka-long marine record in the Marsili Basin (southern Tyrrhenian Sea),” J. Volcano. Geotherm. Res. 327, 23–39 (2016).

    Article  Google Scholar 

  100. Z. Taracsak, M. E. Hartley, R. Burgess, M. Edmonds, F. Iddon, and M.-A. Longpre, “High fluxes of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands,” Geochim. Cosmochim. Acta 258, 19–36 (2019).

    Article  Google Scholar 

  101. A. G. Tomkins and J. A. Mavrogenes, “Generation of metal-rich felsic magmas during crustal anatexis,” Geology 31, 765–768 (2003).

    Article  Google Scholar 

  102. A. G. Tomkins, R. F. Weinberg, and C. R. M. McFariane, “Preferential magma extraction from K- and metal-enriched source regions in the crust,” Mineral. Dep. 44, 171–181 (2009).

    Article  Google Scholar 

  103. R. M. Tuohu, P. J. Wallace, M. W. Loewen, D. A. Swanson, and A. J. R. Kent, “Magma transport and olivine crystallization depths in Kilauea’s east rift zone inferred from experimentally rehomogenized melt inclusions,” Geochim. Cosmochim. Acta. 185, 232–250 (2016).

    Article  Google Scholar 

  104. J. Van Daele, N. Hulsbosch, S. Dewaele, M.-C. Boiron, K. Piessens, A. Boyce, and Ph. Muchez, “Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda,” Ore Geol. Rev. 101, 481–501 (2018).

    Article  Google Scholar 

  105. A. V. Volkov, A. A. Sidorov, and V. I. Starostin, Metallogeny of Volcanogenic Belts and Activation Zones (MAKS, Moscow, 2014) [in Russian].

    Google Scholar 

  106. K. J. Walowski, P. J. Wallace, M. A. Clynne, D. J. Rasmussen, and D. Weis “Slab melting and magma formation beneath the southern Cascade arc,” Earth Planet. Sci. Lett. 446, 100–112 (2016).

    Article  Google Scholar 

  107. K. J. Walowski, P. J. Wallace, K. V. Cashman, J. K. Marks, M. A. Clynne, and P. Ruprecht, “Understanding melt evolution and eruption dynamics of the 1666 C.E. eruption of Cinder Cone, Lassen Volcanic National Park, California: Insights from olivine-hosted melt inclusions,” J. Volcanol. Geotherm. Res. 387, 106665 (2019).

    Article  Google Scholar 

  108. B. F. Walter, M. Burish, M. A.W. Marks, and G. Markl, “Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany,” Mineral. Dep. 52, 1191–1204 (2017).

    Article  Google Scholar 

  109. B. F. Walter, P. Kortenbruck, M. Scharrer, C. Zeitvogel, M. Walle, R. Mertz-Kraus, and G. Markl, “Chemical evolution of ore-forming brines—basement leaching, metal provenance, and the redox link between barren and ore-bearing hydrothermal veins. A case study from the Schwarzwald mining district in SW-Germany,” Chem. Geol. 506, 126–148 (2019).

    Article  Google Scholar 

  110. W. M. White and E. M. Klein, “Composition of the oceanic crust,” Treatise on Geochemistry 4, 457–496 (2014).

    Article  Google Scholar 

  111. P. E. Wieser, F. Jenner, M. Edmonds, J. Maclennan, and B. E. Kunz, “Chalcophile elements track the fate of sulfur at Kilauea Volcano, Hawaii,” Geochim. Cosmochim. Acta. 282, 245–275 (2020).

    Article  Google Scholar 

  112. D. Woelki, M. Regelous, K. M. Haase, and C. Beier, “Geochemical mapping of a paleo-subduction zone beneath the Troodos Ophiolite,” Chem. Geol. 523, 1–8 (2019).

    Article  Google Scholar 

  113. J. A. Wolff, F. Forni, B. S. Ellis, and D. Szymanowski, “Europium and barium enrichments in compositionally zoned felsic tuffs: A smoking gun for the origin of chemical and physical gradients by cumulate melting,” Earth Planet. Sci. Lett. 540, 116251 (2020).

    Article  Google Scholar 

  114. J. H. Yang, L. F. Kang, L. Liu, J. T. Peng, and Y. Q. Qi, “Tracing the origin of ore-forming fluids in the Piaotang tungsten deposit, South China: Constraints from in-situ analyses of wolframite and individual fluid inclusion,” Ore Geol. Rev. 111, 102939 (2019a).

    Article  Google Scholar 

  115. J. H. Yang, Z. Zhang, J. T. Peng, L. Liu, and C. B. Leng, “Metal source and wolframite precipitation process at the Xihuashan tungsten deposit, South China: Insights from mineralogy, fluid inclusion and stable isotope,” Ore Geol. Rev. 111, 102965 (2019b).

    Article  Google Scholar 

  116. S. Yang, M. Humayun, and V. J. M. Salters, “Elemental systematics in MORB glasses from the Mid-Atlantic Ridge,” Geochemistry, Geophysics, Geosystems 19, 4236–4259 (2018).

    Article  Google Scholar 

  117. D. H. Zhang and A. Audetat, “Chemistry, mineralogy and crystallization conditions of porphyry Mo-forming magmas at Urad-Henderson and Silver Creek, Colorado, USA,” J. Petrol. 58, 277–296 (2017).

    Article  Google Scholar 

  118. D. H. Zhang and A. Audetat, “Magmatic-hydrothermal evolution of the barren Huangshan pluton, Anhui Province, China: A melt and fluid inclusion study,” Econ. Geol. 113, 803–824 (2018).

    Article  Google Scholar 

  119. Z. Zhao, X. Xiong, Q. Wang, Z. Bao, Y. Zhang, Y. Xie, and S. Ren, “Alkali-rich igneous rocks and related Au and Cu large and superlarge deposits in China,” Sci. China. Ser. D. 46, 1–13 (2003).

    Google Scholar 

  120. F. M. Zwan van der, C. W. Devey, T. H. Hansteen, R. R. Almeev, M. Augustin, K. M. Haase, A. Basaham, and J. E. Snow, “Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions,” Contrib. Mineral. Petrol. 172, 1–23 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank O.A. Lukanin and N.L. Mironov for constructive criticism and valuable recommendations.

Funding

This study was carried out under government-financed research projects for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Naumov or A. V. Girnis.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A., Girnis, A.V. et al. Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. I. Mean Concentrations of 45 Elements in the Main Geodynamic Settings of the Earth. Geochem. Int. 60, 325–344 (2022). https://doi.org/10.1134/S0016702922040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922040036

Keywords:

Navigation