Skip to main content
Log in

Biogenic Migration of Nitrogen and Phosphorus in Saline Drying Lakes in Crimea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Migration of nutrients is studied in five drying salt lakes belonging to the Yevpatoriya Group (Crimea). The nutrients enter in the Crimean salt lakes from natural sources, in particular, atmospheric precipitation, erosion materials, seawater overflow during storms, products of vital activity of birds and animals grazing on coasts, processes in ecosystems (eutrophication and vital functions of aquatic organisms). Nitrogen and phosphorus are also supplied with runoff directly in water bodies and indirectly via ground waters, and recreation activity on the lake coasts. An increase of air temperature above +30°C in summer caused intense evaporation and drying up of the lakes. In drying water bodies, the natural processes of the nitrogen and phosphorus migration are terminated due to cessation of biota functioning, especially of microalgae, microbial communities and crustacean Artemia. In drying periods, nitrogen, phosphorus, and pollutants are accumulated and concentrated on the bottom sediments and during strong storms and winds are propagated over adjacent territory and, respectively, represent a threat to human health. The paper discusses the possible scenario of the transformation of ecosystems of saline lakes under possible climatic warming and increasing anthropogenic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. K. M. Akhmedenov, “Tourist and recreational potential of the salt lakes of Western Kazakhstan,” Geol. J. Tourism and Geosites 30 (2), 782–787 (2020).

    Article  Google Scholar 

  2. V. Amiri, M. Nakhaei, R. Lak, and M. Kholghi, “Investigating the salinization and freshening processes of the coastal groundwater resources in Urmia aquifer, NW Iran,” Environ. Monitor. Assess. 188 (4), Article N 233 (2016).

    Article  Google Scholar 

  3. D. Bamba, M. Coulibaly, and D. Robert, “Nitrogen-containing organic compounds: origins, toxicity and conditions of their photocatalytic mineralization over TiO2,” Sci. Total Environ. 580, 1489–1504 (2017).

    Article  Google Scholar 

  4. S. C. Chapra, A. Dove, and G. T. J. Warren, “Long-Term trends of Great Lakes Major ion chemistry,” J. Great Lakes Research. 38, 550–560 (2012).

    Article  Google Scholar 

  5. N. Cherekarm and A. P. Pathak, “Chemical assessment of Sambhur Soda Lake, a Ramasar site in India,” J. Water Chem. Technol. 38(4), 244–247 (2016).

    Article  Google Scholar 

  6. L. Di Meglio, F. Santos, M. Gomariz, C. Almansa, C. López, J. Antón, and D. Nercessian, “Seasonal dynamics of extremely halophilic microbial communities in three Argentinian salterns,” FERMS Microbiol. Ecol. 92 (12), Article fiw184 (2016).

  7. V. V. Ezhov and D. N. Tarasenko, Secrets of Crimean Health (Biznes-Inform, Simferopol, 2002) [in Russian].

    Google Scholar 

  8. K. A. Fisher J. J. Meisinger, and B. R. James, “Urea hydrolysis rate in soil toposequences as influenced by pH, carbon, nitrogen, and soluble metals,” J Environ Qual. 45 (1), 349–359 (2016).

    Article  Google Scholar 

  9. Ch. Geldenhuys, Ph. Cotiyane, and A. Rajkaran, “Understanding the creek dynamics and environmental characteristics that determine the distribution of mangrove and saltmarsh communities at Nahoon Estuary,” South Afr. J. Botany. 107, 137–147 (2016).

    Article  Google Scholar 

  10. P. M. Glibert E. Mayorga, and S. Seitzinger, “Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: Application of spatially explicit nutrient export models,” Harmful Algae 8 (1), 33–38 (2008).

    Article  Google Scholar 

  11. R. Golan, I. Gavrieli, J. Ganor, and B. Lazarc, “Controls on the pH of hyper-saline lakes – A lesson from the Dead Sea,” Earth Planet. Sci. Lett. 434, 289–297 (2016).

    Article  Google Scholar 

  12. O. A. Gulov, Complex Reconnaissance of Study of Largest Deposits of the Crimean Therapeutic Mud. Report on the Geoecological Works (GGRES, Saki, 2006) [in Russian].

  13. O. A. Gulov, Ecocyde of Crimean Salt Lakes. Theory and Practice of Recovery of Internal Lakes (Lema, St. Petersburg, 2007), pp. 60–78 [in Russian].

    Google Scholar 

  14. L. Guo, J. Z. Zhang, and C. Guéguen, “Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River,” Global Biogeochem. Cycles. 18, 1–12 (2004).

    Google Scholar 

  15. Y. Hetzel, C. Pattiaratchi, R. Lowe, and R. Hofmeister, “Wind and tidal mixing controls on stratification and dense water outflows in a large hypersaline bay,” J. Geophys. Res. Oceans. 120(9), 6034–60556 (2015).

    Article  Google Scholar 

  16. J. Huang, C.-C. Xu, B. G. Ridoutt, X.-C. Wang, and P.‑A. Ren, “Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China,” J. Cleaner Prod. 159, 171–179 (2017).

    Article  Google Scholar 

  17. N. M. Ivanyutin, “Influence of anthropogenic activity on the groundwaters of Crimea,” Puti Povysh. Orozhaem. Zemledeliya 3 (59), 25–31 (2016).

    Google Scholar 

  18. N. M. Ivanyutin and S. V. Podovalova, “Contamination of water bodies of Crimea by waste waters,” Ekol. Stroit. 1, 4–8 (2018).

    Google Scholar 

  19. R. Jellison, W. D. Williams, B. Timms, and N. V. Aladin, “Salt lakes: values, threats, and future,” Aquatic Ecosystems: Trends and Global Prospects (Cambridge University Press, Cambridge, 2008), pp. 94–110.

    Google Scholar 

  20. V. A. Khokhlov, V. I. Vasenko, V. V. Chaban, et al., Geoecological Study, Regime, Exploitation, and Mountainous–SanitaryProtection of Deposits of Hydromineral Resources of Republic of Crimea in the action zone of Crimean SDPP. Report on the Scientific-Practical Work for 2018 (Krymskaya GGRES, Saki, 2019) [in Russian].

  21. V. Lazar, C. Iordache (Curutiu), L. M. Ditu, A. Holban, I. Gheorghe, F. Marinescu, M. Ilie, A. Ivanov, D. Dobre, and M. Chifiriuc, “Physico-chemical and microbiological assessment of organic pollution in Play Salty lakes from protected regions,” J. Environ. Protect. 8, 1474–1489 (2017).

    Article  Google Scholar 

  22. H. Liu, Z. Chen, Y. Guan, and S. Xu, “Role and application of iron in water treatment for nitrogen removal: a review,” Chemosphere 204, 51–62 (2018).

    Article  Google Scholar 

  23. C. S. Mantyka-Pringle, T. G. Martin, D. B. Moffatte, et al., “Prioritizing management actions for the conservation of freshwater biodiversity under changing climate and land-cover,” Biol. Conserv. 197, 80–89 (2016).

    Article  Google Scholar 

  24. Mass Concentration of Nitrates in Waters. Potentiometric Measurement with ion-selective electrode. RD 52.24.367-2010.

  25. Mass Concentration of Phosphates and Polyphosphates in Waters Photometric Measurements. RD 52.24.382-2006.

  26. S. Mitchell, I. Boateng, and F. Couceiro, “Influence of flushing and other characteristics of coastal lagoons using data from Ghana,” Ocean Coast. Manag. 143 (1), 26–37 (2017).

    Article  Google Scholar 

  27. T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).

    Article  Google Scholar 

  28. T. I. Moiseenko and N. A. Gashkina, Formation of Chemical Composition of Lacustrine Waters under Environmental Changes (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  29. T. I. Moiseenko and I. I. Rudneva, “Global pollution and nitrogen functions in the hydrosphere,” Dokl. Earth Sci. 420 (3), 676–680 (2008).

    Article  Google Scholar 

  30. I. Pepenel, N. Cracium, V. Jujea, A. Florea, C. E. Pop, and G. Stoian, “Biochemical parameters of salt lakes sapropelic sludge from Buzau Country protected area, with different degrees of microbiological attrition,” Sci. Annals Danube Delta Ins. 25. 101–111 (2020).

    Google Scholar 

  31. Photometric Determination of Nitrite-Ions in Potable, Surface, and Waste Waters using Griess Reagent. PNDF 14.1:2: 4.3-95. 1995.

  32. A. M. Ponizovskii, Saline Resources of Crimea (Krym, Simferopol, 1965) [in Russian].

    Google Scholar 

  33. M. Ravurmaci and A. K. Ustun, “Assessment of groundwater quality using DEA and AHP: a case study in the Serefkikochisar region in Turkey,” Environ. Monitor. Assess. 188 (4). Article N 25 (2016).

    Article  Google Scholar 

  34. J. Ch. Robert and S. Emerson, “The acid-base and oxidation–reduction balances of the Earth,” Int. Geophys. 72. 421–436 (2000).

    Article  Google Scholar 

  35. I. I. Rudneva, I. N. Zalevskaya, V. G. Shaida, G. N. Memetlaeva, and A. V. Scherba, “Biogenic migration of nitrogen and phosphorus in Crimean hypersaline lakes: a seasonal aspect,” Geochem. Int. 58 (10), 1123–1134 (2020).

    Article  Google Scholar 

  36. R. Santanu, J. Mukherjee, and S. Mandai, “Modelling nitrogen and carbon cycles in Hooghy estuary along with adjacent mangrove ecosystem,” Develop. Environ. Model. 27, 289–320 (2015).

    Article  Google Scholar 

  37. J. R. Selemani, J. Zhang, A. N. N. Muzuka, K. N. Njau, G. Zhang, M. K. Mzuza, and A. Maggid, “Nutrients’ distribution and their impact on Pangani River Basin’s ecosystem—Tanzania,” Environ. Technol. 39(6), 1–15 (2018).

    Article  Google Scholar 

  38. S. Shadkam, F. Ludwig, T. H. van Vliet, A. Pastor, and P. Kabat, “Preserving the world second largest hypersaline lake under future irrigation and climate change,” Sci. Total Environ. 559, 317–325 (2016).

    Article  Google Scholar 

  39. V. S. Tarasenko, Ecology of Crimea. Hazards to Steady Development. Plan of Activities (Arial, Simferopol’, 2014) [in Russian].

    Google Scholar 

  40. K. Tusupova, A. Peder Hjorth, and M. Morave, “Drying lakes: a review on the apllied restoration strategies and health conditions in contiguous areas,” Water 12 (749), 1–21 (2020).

    Article  Google Scholar 

  41. V. I. Vasenko, Results of Reconnaissance Study of Lake Moinaki. Report of SGGRES (Saki, 2012) [in Russian].

    Google Scholar 

  42. Z. Wang, J. Zheng, J. Tang, X. Wang, and Z. Wu, “A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications,” Sci. Rep.-UK. 6, Article No. 21653 (2016).

  43. T. H. Wooldridge, J. B. Adams, and M. Fernandes, “Biotic responses to extreme hypersalinity in an arid zone estuary,” South Afr. J. Botany 107, 160–169 (2016).

    Article  Google Scholar 

  44. W. A. Wurtsbaugh, C. Miller, S. E. Null, R. J. DeRose, P. Wilcock, M. Hahnenberger, F. Howe, and J. Moore, “Decline of the world saline lakes,” Nat. Geosci. 10. 816–821 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the government-financed program of the Kovalevsky Institute of the Biology of Southern Seas, Russian Academy of Sciences (project no. АААА-А18-118021490093-4 Functional, Metabolic, and Toxicological Aspects of the Existence of Aquatic Organisms and their Populations in Biotopes with Different Physicochemical Regime).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Rudneva or I. N. Zalevskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudneva, I.I., Zalevskaya, I.N., Shaida, V.G. et al. Biogenic Migration of Nitrogen and Phosphorus in Saline Drying Lakes in Crimea. Geochem. Int. 60, 170–182 (2022). https://doi.org/10.1134/S0016702922020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922020082

Keywords:

Navigation