Skip to main content
Log in

Reasons for the Formation of Acidic Drainage Water in Dumps of Sulfide-Containing Rocks

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A critical analysis of experimental and computational studies on the actual ecological problem of the formation of acidic drainage waters in dumps of sulfide-containing rocks has been carried out. The focus is placed onto assessing reasons for changes in the oxidation rate of pyrite (r), which is the most common sulfide. The dependences of r on temperature, pH, and contents of O2 and Fe3+ in the solution remain almost the only ones expressed in the form of equations. The slow stage of Fe2+ oxidation in acidic solutions cannot control r under natural conditions, because this process is accelerated by iron-oxidizing bacteria. The value of r also changes depending on the type and content of isomorphic admixtures in pyrite, decreases under the influence of some ligands and other sulfides (galvanic effect), and varies with time. The effect of time is usually explained by the formation of a surface protective layer of reaction products, but a probable alternative explanation is the dissolution (disappearance) of surface defects. Depending on the content and activity of minerals that produce and neutralize acid, the weathering of dumps can proceed with the formation of acidic or near-neutral solutions. Scenarios of the processes are predicted using static and kinetic tests, which have significant disadvantages because of the differences between the laboratory and field conditions. The use of mathematical modeling for this purpose is promising, but so far it is limited due to the simplification of models and calculation errors. However, the simulation has clearly showed that the value of r in the dumps is controlled by the rate of O2 delivery, which in turn depends on the pore size, the degree of pore filling with water, and the temperature and pressure gradients. To prevent and recultivate acidic drainage waters, materials are used that isolate individual grains of sulfides (microencapsulation) or the entire dump from O2 penetration, alkaline materials that neutralize acid, bactericides that reduce the activity of iron-oxidizing bacteria, and bioreactors in which metal sulfides are deposited under the action of sulfate-reducing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Aachib, M. Mbonimpa, and M. Aubertin, “Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers,” Water, Air, Soil Pollut. 156 (1–4), 163–193 (2004).

    Article  Google Scholar 

  2. P. K. Abraitis, R. A. D. Pattrick, and D. J. Vaughan, “Variations in the compositional, textural and electrical properties of natural pyrite: a review,” Int. J. Miner. Process. 74(1–4), 41–59 (2004).

    Article  Google Scholar 

  3. P. Ačai, E. Sorrenti, T. Gorner, M. Polakovič, M. Kongolo, P. de Donato, “Pyrite passivation by humic acid investigated by inverse liquid chromatography,” Colloids Surf. A. 337, 39–46 (2009).

    Article  Google Scholar 

  4. P. Acero, J. Cama, C. Ayora, “Sphalerite dissolution kinetics in acidic environment,” Appl. Geochem. 22 (9), 1872-1883 (2007a).

    Article  Google Scholar 

  5. P. Acero, J. Cama, and C. Ayora, “Rate law for galena dissolution in acidic environment,” Chem. Geol. 245 (3–4), 219–229 (2007b).

    Article  Google Scholar 

  6. V. A. Alekseyev, B. N. Ryzhenko, S. L. Shvartsev, V. P. Zverev, M. B. Bukaty, M. V. Mironenko, M. V. Charykova, and O. V. Chudaev, Geological Evolution and Self-Organization of the Water—Rock System. Volume 1. Water–Rock System in the Earth’s Crust: Interaction, Kinetics, Equilibrium, and Modeling (SO RAS, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  7. V. A. Alekseyev, L. N. Kochnova, Ya. V. Bychkova, and L. V. Krigman, “Extraction of hazardous elements by water from contaminated rocks: an experimental study,” Geochem. Int. 49 (12), 1239–1262 (2011).

    Article  Google Scholar 

  8. R. T. Amos, D. W. Blowes, L. Smith, and D. C. Sego, “Measurement of wind-induced pressure gradients in a waste rock pile,” Vadose Zone J. 8, 953–962 (2009).

    Article  Google Scholar 

  9. C. Anbeek, N. Van Breemen, E. L. Meijer, and L. Van Der Plas, “The dissolution of naturally weathered feldspar and quartz,” Geochim. Cosmochim. Acta 58 (21), 4601–4613 (1994).

    Article  Google Scholar 

  10. O. Anterrieu, M. Chouteau, and M. Aubertin, “Geophysical characterization of the largescale internal structure of a waste rock pile from a hard rock mine,” Bull. Geol. Eng. Environ. 69, 533–548 (2010).

    Article  Google Scholar 

  11. M. Aubertin, J.-F. Ricard, and R. P. Chapuis, “A predictive model for the water retention curve: application to tailings from hard-rock mines,” Can. Geotech. J. 35, 55–69 (with Erratum 36, 401) (1998).

  12. P. J. Binning, D. Postma, T. F. Russell, J. A. Wesselingh, and P. F. Boulin, “Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone,” Water Resour. Res. 43 (2), art. no. W02414 (2007).

    Article  Google Scholar 

  13. S. Blackmore, B. Vriens, M. Sorensen, I. M. Power, L. Smith, S. J. Hallam, K. U. Mayer, and R. D. Beckie, “Microbial and geochemical controls on waste rock weathering and drainage quality,” Sci. Total Env. 640–641, 1004–1014 (2018).

    Article  Google Scholar 

  14. S. Bouchemella, A. Seridi, and I. Alimi-Ichola, “Numerical simulation of water flow in unsaturated soils: Comparative study of different forms of Richards’s equation,” Eur. J. Env. Civil Eng. 19 (1), 1-26 (2015).

    Article  Google Scholar 

  15. S. C. Bouffard, B. F. Rivera-Vasquez, and D. G. Dixon, “Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media,” Hydrometallurgy 84 (3–4), 225–238 (2006).

    Article  Google Scholar 

  16. R. J. Bowell, K. P. Williams, R. J. Connelly, P. J. K. Sadler, and J. E. Dodds, “Chemical containment of mine waste,” Geol. Soc. Special Publ. 157, 213–240 (1999).

    Article  Google Scholar 

  17. A. E. Brookfield, D. W. Blowes, and K. U. Mayer, “Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment,” J. Contamin. Hydrol. 88(1–2), 1–22 (2006).

    Article  Google Scholar 

  18. C. L. Caldeira, V. S. T. Ciminelli, and K. Osseo-Asare, “The role of carbonate ions in pyrite oxidation in aqueous systems,” Geochim. Cosmochim. Acta 74 (6), 1777–1789 (2010).

    Article  Google Scholar 

  19. A. P. Chandra and A. R. Gerson, “The mechanisms of pyrite oxidation and leaching: a fundamental perspective,” Surf. Sci. Rep. 65 (9), 293–315 (2010).

    Article  Google Scholar 

  20. A. Chopard, B. Plante, M. Benzaazoua, H. Bouzahzah, and P. Marion, “Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides,” Chemosphere 166, 281–291 (2017).

    Article  Google Scholar 

  21. I. Demers, M. Mbonimpa, M. Benzaazoua, M. Bouda, S. Awoh, S. Lortie, and M. Gagnon, “Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests,” Minerals Eng. 107, 43-52 (2017).

    Article  Google Scholar 

  22. Z. Diao, T. Shi, S. Wang, X. Huang, T. Zhang, Y. Tang, X. Zhang, and R. Qiu, “Silane-based coatings on the pyrite for remediation of acid mine drainage,” Water Res. 47 (13), 4391–4402 (2013).

    Article  Google Scholar 

  23. J. W. M. Dockrey, B. J. Lindsay, K. U. Mayer, R. D. Beckie, K. L. I. Norlund, L. A. Warren, and G. Southam, “Acidic microenvironments in waste rock characterized by neutral drainage: bacteria–mineral interactions at sulfide surfaces,” Minerals 4 (1), 170–190 (2014).

    Article  Google Scholar 

  24. B. Dold, “Acid rock drainage prediction: a critical review,” J. Geochem. Explor. 172, 120–132 (2017).

    Article  Google Scholar 

  25. P. Duxson, J. L. Provis, G. C. Lukey, and J. S. J. van Deventer, “The role of inorganic polymer technology in the development of ‘green concrete’,” Cement Concr. Res. 37 (12), 1590–1597 (2007).

    Article  Google Scholar 

  26. B. Elbefling and R. V. Nicholson, “Field determination of sulphide oxidation rates in mine tailings,” Water Resour. Res. 32 (6), 1773–1784 (1996).

    Article  Google Scholar 

  27. A. R. Elsetinow, M. J. Borda, M. A. A. Schoonen, and D. R. Strongin, “Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails,” Adv. Env. Res. 7 (4), 969–974 (2003).

    Article  Google Scholar 

  28. G. K. Erguler, Z. A. Erguler, H. Akcakoca, and A. Ucar, “The effect of column dimensions and particle size on the results of kinetic column test used for acid mine drainage (AMD) prediction,” Miner. Eng. 55, 18–29 (2014).

    Article  Google Scholar 

  29. V. P. Evangelou and Y. L. Zhang, “A review: pyrite oxidation mechanisms and acid mine drainage prevention,” Crit. Rev. Env. Sci. Technol. 25(2), 141–199 (1995).

    Article  Google Scholar 

  30. O. Fala, J. Molson, M. Aubertin, and B. Bussière, “Numerical modelling of flow and capillary barrier effects in unsaturated waste rock piles,” Mine Water Environ. 24 (4), 172—185 (2005).

    Article  Google Scholar 

  31. O. Fala, J. Molson, M. Aubertin, I. Dawood, B. Bussière, and R. P. Chapuis, “A numerical modelling approach to assess long-term unsaturated flow and geochemical transport in a waste rock pile,” Int. J. Mining, Reclamation and Environment 27 (1), 38-55 (2013).

    Article  Google Scholar 

  32. R. Fan, M. D. Short, S.-J. Zeng, G. Qian, J. Li, R. C. Schumann, N. Kawashima, R. S. C. Smart, A. R. Gerson, “The formation of silicate-stabilized passivating layers on pyrite for reduced acid rock drainage,” Environ. Sci. Technol. 51 (19), 11317–11325 (2017).

    Article  Google Scholar 

  33. O. L. Gas’kova and S. B. Bortnikova, “On the quantitative evaluation of the neutralizing potential of host rocks,” Geochem. Int. 45 (4), 409–412 (2007).

    Article  Google Scholar 

  34. J.-M. Gautier, E. H. Oelkers, and J. Schott, “Are quartz dissolution rates proportional to B.E.T. surface areas?” Geochim. Cosmochim. Acta 65 (7), 1059–1070 (2001).

    Article  Google Scholar 

  35. H. H. Gerke, J. W. Molson, and E. O. Frind, “Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils,” J. Hydrol. 209, 166–185 (1998).

    Article  Google Scholar 

  36. Y. Ghorbani, M. Becker, A. Mainza, J.-P. Franzidis, and J. Petersen, “Large particle effects in chemical/biochemical heap leach processes—A review,” Mineral. Eng. 24, 1172–1184 (2011).

    Article  Google Scholar 

  37. R. Hakkou, M. Benzaazoua, and B. Bussière, “Laboratory evaluation of the use of alkaline phosphate wastes for the control of acidic mine drainage,” Mine Water and the Environment 28 (3), 206 (2009).

    Article  Google Scholar 

  38. C. Heidel, M. Tichomirowa, and M. Junghans, “Oxygen and sulfur isotope investigations of the oxidation of sulfide mixtures containing pyrite, galena, and sphalerite,” Chem. Geol. 342, 29–43 (2013).

    Article  Google Scholar 

  39. X. Huang and V. P. Evangelou, Abatement of Acid Mine Drainage by Encapsulation of Acid Producing Geologic Materials. U.S. Department of the Interior, Bureau of Mines, Contact No. J0309013 (1992).

  40. T. Igarashi, R. Saito, M. Sarashina, and K. Asakura, “Impoundment of excavated pyrite-bearing rock using silty covering soil,” Clay Sci. 12, 143–148 (2006).

    Google Scholar 

  41. D. B. Jaynes, A. S. Rogowski, and H. B. Pionke, “Acid mine drainage from reclaimed coal strip mines. I. Model description,” Water Resour. Res. 20 (2), 233–242 (1984).

    Article  Google Scholar 

  42. J. K. Jerz and J. D. Rimstidt “Pyrite oxidation in moist air,” Geochim. Cosmochim. Acta 68 (4), 701–714 (2004).

    Article  Google Scholar 

  43. R. K. T. Jha, J. Satur, N. Hiroyoshi, M. Ito, and M. Tsunekawa, “Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol,” Mineral. Process. Extr. Metal. Rev. 33 (2), 89–98 (2012).

    Article  Google Scholar 

  44. C. L. Jiang, X. H. Wang, and B. K. Parekh, “Effect of sodium oleate on inhibiting pyrite oxidation,” Int. J. Miner. Process. 58, 305–318 (2000).

    Article  Google Scholar 

  45. D. M. Kargbo, G. Atallah, and S. Chatterjee, “Inhibition of pyrite oxidation by a phospholipid in the presence of silicate,” Environ. Sci. Technol. 38, 3432–3441 (2004).

    Article  Google Scholar 

  46. B. D. Khalezov, Extended Abstract of Doctoral Dissrtation in Technical Sciences (Inst. Metallurg. Material. im. Baikova, Yekaterinburg, 2009) [in Russian].

  47. B. E. Kimball, J. D. Rimstidt, and S. L. Brantley, “Chalcopyrite dissolution rate laws,” Appl. Geochem. 25 (7), 972–983 (2010).

    Article  Google Scholar 

  48. J. Kiventerӓ, I. Lancellotti, M. Catauro, F. D. Poggetto, C. Leonelli, and M. Illikainen, “Alkali activation as new option for gold mine tailings inertization,” J. Clean. Prod. 187, 76–84 (2018).

  49. C. Kohfahl, J. Greskowiak, and A. Pekdeger, “Effective diffusion and microbiologic activity as constraints describing pyrite oxidation in abandoned lignite mines,” Appl. Geochem. 22 (1), 1-16 (2007).

    Article  Google Scholar 

  50. K. Kollias, E. Mylona, N. Papassiopi, and A. Xenidis, “Conditions favoring the formation of iron phosphate coatings on the pyrite surface,” Desalin. Water Treat. 56 (5), 1274–1281 (2015).

    Article  Google Scholar 

  51. R. Lefebvre, D. Hockley, J. Smolensky, and P. Gélinas, “Multiphase transfer processes in waste rock piles producing acid mine drainage: 1. Conceptual model and system characterization,” J. Contam. Hydrol. 52 (3–4), 137–164 (2001a).

    Article  Google Scholar 

  52. R. Lefebvre, D. Hockley, J. Smolensky, and A. Lamontagne, “Multiphase transfer processes in waste rock piles producing acid mine drainage: 2. Applications of numerical simulation,” J. Contam. Hydrol. 52 (3–4), 165–186 (2001b).

    Article  Google Scholar 

  53. E. A. León, A. W. Rate, C. Hinz, and G. D. Campbell, “Weathering of sulphide minerals at circum-neutral-pH in semi-arid/arid environments: Influence of water content,” SuperSoil 2004: 3rd Australian New Zealand Soils Conference, University of Australia (2004), p. 7.

  54. Z.-S. Liu, C. Huang, L. Ma, E. Dy, Z. Xie, K. Tufa, E. A. Fisher, J. Zhou, K. Morin, M. Aziz, C. Meints, M. O’Kane, and L. Tallon, “The characteristic properties of waste rock piles in terms of metal leaching,” J. Contam. Hydrol. 226, 103540 (2019).

    Article  Google Scholar 

  55. M. E. Lorca, K. U. Mayer, D. Pedretti, L. Smith, and R. D. Beckie, “Spatial and temporal fluctuations of pore-gas composition in sulfidic mine waste rock,” Vadose Zone J. 15 (10), 1–13 (2016).

    Article  Google Scholar 

  56. M. A. McKibben and H. L. Barnes, “Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures,” Geochim. Cosmochim. Acta 50 (7), 1509–1520 (1986).

    Article  Google Scholar 

  57. B. A. Méndez-Ortiz, A. Carrillo-Chávez, and M. G. Monroy-Fernández, “Acid rock drainage and metal leaching from mine waste material (tailings) of a Pb–Zn–Ag skarn deposit: environmental assessment through static and kinetic laboratory tests,” Rev. Mexicana Ciencias Geol. 24 (2), 161–169 (2007).

    Google Scholar 

  58. R. E. Mielke, D. L. Pace, T. Porter, and G. Southam, “A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions,” Geobiology 1, 81–90 (2003).

    Article  Google Scholar 

  59. F. J. Millero, S. Sotolongo, and M. Izaguirre, “The oxidation kinetics of Fe(II) in seawater,” Geochim. Cosmochim. Acta 51 (4), 793–801 (1987).

    Article  Google Scholar 

  60. J. W. Molson, O. Fala, M. Aubertin, and B. Bussiere, “Numerical simulations of pyrite oxidation and acid mine drainage in unsaturated waste rock piles,” J. Contam. Hydrol. 78 (4), 343–371 (2005).

    Article  Google Scholar 

  61. J. Molson, M. Aubertin, B. Bussière, and M. Benzaazoua, “Geochemical transport modelling of drainage from experimental mine tailings cells covered by capillary barriers,” Appl. Geochem. 23 (1), 1–24 (2008).

    Article  Google Scholar 

  62. M. C. Moncur, C. J. Ptacek, M. B. J. Lindsay, D. W. Blowes, and J. L. Jambor, “Long-term mineralogical and geochemical evolution of sulfide mine tailings under a shallow water cover,” Appl. Geochem. 57, 178–193 (2015).

    Article  Google Scholar 

  63. E. Mylona, A. Xenidis, and I. Paspaliaris, “Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limestone,” Mineral. Eng. 13 (10–11), 1161–1175 (2000).

    Article  Google Scholar 

  64. G. Naidu, S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, and S. Vigneswaran, “A critical review on remediation, reuse, and resource recovery from acid mine drainage,” Environ. Pollut. 247, 1110–1124 (2019).

    Article  Google Scholar 

  65. R. V. Nicholson, R. W. Gillham, and E. J. Reardon, “Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings,” Geochim. Cosmochim. Acta 54 (2), 395–402 (1990).

    Article  Google Scholar 

  66. D. K. Nordstrom, “The rate of ferrous iron oxidation in a stream receiving acid mine effluent,” In: Selected Papers in the Hydrologic Sciences, Ed. by S. Subitzky, U.S. Geol. Surv. Water Supply Paper 2270 (Washington, 1985), pp. 113–119.

  67. D. K. Nordstrom, D. W. Blowes, and C. J. Ptacek, “Hydrogeochemistry and microbiology of mine drainage: An update,” Appl. Geochem. 57, 3–16 (2015).

    Article  Google Scholar 

  68. J. L. Palandri and Y. K. Kharaka, A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling, Open File Report 1068 (2004).

  69. D. Parisi, J. Horneman, and V. Rastogi, “Use of bactericides to control acid mine drainage from surface operations,” In: Proceedings of the International Land Reclamation and Mine Drainage Conference (U.S. Bureau of Mines, Pittsburgh, 1994), pp. 319–325.

  70. I. Park, C. B. Tabelin, K. Magaribuchi, K. Seno, M. Ito, and N. Hiroyoshi, “Suppression of the release of arsenic from arsenopyrite by Carrier-microencapsulation using Ti-catechol complex,” J. Hazard Mater. 344, 322–332 (2018a).

    Article  Google Scholar 

  71. I. Park, C. B. Tabelin, K. Seno, S. Jeon, M. Ito, and N. Hiroyoshi, “Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes,” Chemosphere 205, 414–425 (2018b).

    Article  Google Scholar 

  72. I. Park, C. B. Tabelin, S. Jeon, X. Li, K. Seno, M. Ito, and N. Hiroyoshi, “A review of recent strategies for acid mine drainage prevention and mine tailings recycling,” Chemosphere 219, 588–606 (2019).

    Article  Google Scholar 

  73. D. Pedretti, K. U. Mayer, and R. D. Beckie, “Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals,” J. Contam. Hydrol. 201, 30–38 (2017).

    Article  Google Scholar 

  74. D. Pedretti, K.U. Mayer, R. D. Beckie, “Controls of uncertainty in acid rock drainage predictions from waste rock piles examined through Monte-Carlo multicomponent reactive transport,” Stochastic Environ. Res. Risk Assessment 34 (1), 219–233 (2020).

    Article  Google Scholar 

  75. R. Pérez-López, J. Cama, J. M. Nieto, C. Ayora, and M. W. Saaltink, “Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments,” Appl. Geochem. 24 (9), 1712–1723 (2009).

    Article  Google Scholar 

  76. B. Pesic, D. J. Oliver, and P. Wichlacz, “An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans,” Biotechnol. Bioeng. 33, 428–439 (1989).

    Article  Google Scholar 

  77. S. Pozo-Antonio, I. Puente-Luna, S. Lagüela-López, and M. Veiga-Ríos, “Techniques to correct and prevent acid mine drainage: a review,” DINA 81 (184), 73–80 (2014).

    Google Scholar 

  78. G. Qiu, Y. Luo, C. Chen, Q. Lv, W. Tan, F. Liu, and C. Liu, “Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems,” J. Environ. Sci. 45, 164–176 (2016).

    Article  Google Scholar 

  79. B. J. Reedy, J. K. Beattie, and R. T. Lowson, “A vibrational spectroscopic 18O tracer study of pyrite oxidation,” Geochim. Cosmochim. Acta 55, 1609–1614 (1991).

    Article  Google Scholar 

  80. X. Ren, L. Zhang, D. Ramey, B. Waterman, and S. Ormsby, “Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer,” J. Mater. Sci. 50, 1370-1381 (2015).

    Article  Google Scholar 

  81. I. Ribet, C. J. Ptacek, D. W. Blowes, and J. L. Jambor, “The potential for metal release by reductive dissolution of weathered mine tailings,” J. Contam. Hydrol. 17, 239–273 (1995).

    Article  Google Scholar 

  82. J. D. Rimstidt and D. J. Vaughan, “Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism,” Geochim. Cosmochim. Acta 67 (5), 873–880 (2003).

    Article  Google Scholar 

  83. C. G. Romano, K. U. Mayer, D. R. Jones, D. A. Ellerbroek, and D. W. Blowes, “Effectiveness of various cover scenarios on the rate of sulfide oxidation of mine tailings,” J. Hydrol. 271 (1–4), 171–187 (2003).

    Article  Google Scholar 

  84. L. S. Rybnikova and P.A. Rybnikov, “Regularities in the evolution of groundwater quality at abandoned copper sulfide mines at the Levikha ore field, Central Urals, Russia,” Geochem. Int. 57 (3), 298–314 (2019).

    Article  Google Scholar 

  85. D. J. Sapsford, R. J. Bowell, M. Dey, and K. P. Williams, “Humidity cell tests for the prediction of acid rock drainage,” Miner. Eng. 22 (1), 25–36 (2009).

    Article  Google Scholar 

  86. K. Sasaki, M. Tsunekawa, K. Hasebe, and H. Konno, “Effect of anionic ligands on the reactivity of pyrite with Fe(III) ions in acid solutions,” Colloids Surf. A. 101 (1), 39–49 (1995).

    Article  Google Scholar 

  87. J. M. Scharer, V. Garga, R. Smith, and B. E. Halbert, “Use of steady state models for assessing acid generation in pyritic mine tailings,” In: The Second National Conference on the Abatement of Acidic Drainage (Montreal, 1991), Vol. 2, p. 211.

  88. S. Seng, C. B. Tabelin, M. Kojima, N. Hiroyoshi, and M. Ito, “Galvanic microencapsulation (GME) using zero-valent aluminum and zero-valent iron to suppress pyrite oxidation,” Mater. Trans. 60 (2), 277–286 (2019).

    Article  Google Scholar 

  89. E. S. Sidkina, M. V. Mironenko, and E. V. Cherkasova, “Application of equilibrium-kinetic modeling for predicting the chemical composition of subdump waters of the Udokan deposit (Russia),” Geochem. Int. 58 (13), 1419–1429 (2020).

    Article  Google Scholar 

  90. P. C. Singer and W. Stumm, “Acid mine drainage – the rate limiting step,” Science 167 (3921), 1121–1123 (1970).

    Article  Google Scholar 

  91. J. G. Skousen, P. F. Ziemkiewicz, and L. M. McDonald, “Acid mine drainage formation, control and treatment: Approaches and strategies,” Extr. Indust. Soc. 6 (1), 241–249 (2019).

    Article  Google Scholar 

  92. A. A. Sobek, W. A. Schuller, J. R. Freeman, and R. M. Smith, “Field and laboratory methods applicable to overburdens and minesoils,” US EPA Publ., No. EPA-600/2–78–054 (1978).

  93. A. A. Sobek, V. Rastogi, and D. A. Benedetti, “Prevention of water pollution problems in mining: the bactericide technology,” Int. J. Mine Water. 9 (1–4), 133–148 (1990).

    Article  Google Scholar 

  94. W. Stumm and G. F. Lee, “Oxygenation of ferrous iron,” Ind. Eng. Chem. 53, 143–146 (1961).

    Article  Google Scholar 

  95. H. Sun, M. Chen, L. Zou, R. Shu, and R. Ruan, “Study of the kinetics of pyrite oxidation under controlled redox potential,” Hydrometallurgy 155, 13–19 (2015).

    Article  Google Scholar 

  96. C. B. Tabelin, S. Veerawattananun, M. Ito, N. Hiroyoshi, and T. Igarashi, “Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations,” Sci. Total Environ. 580, 687–698 (2017a).

    Article  Google Scholar 

  97. C. B. Tabelin, S. Veerawattananun, M. Ito, N. Hiroyoshi, and T. Igarashi, “Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions,” Sci. Total Environ. 581–582, 126–135 (2017b).

    Article  Google Scholar 

  98. C. B. Tabelin, T. Igarashi, M. Villacorte-Tabelin, I. Park, E. M. Opiso, M. Ito, and N. Hiroyoshi, “Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies,” Sci. Total Environ. 645, 1522–1553 (2018).

    Article  Google Scholar 

  99. E. C. Todd, D. M. Sherman, and J. A. Purton, “Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy,” Geochim. Cosmochim. Acta. 67 (5), 881–893 (2003).

    Article  Google Scholar 

  100. H. Wang, P. A. Dowd, and C. Xu, “A reaction rate model for pyrite oxidation considering the influence of water content and temperature,” Miner. Eng. 134, 345–355 (2019).

    Article  Google Scholar 

  101. M. A. Williamson and J. D. Rimstidt, “The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation,” Geochim. Cosmochim. Acta. 58 (24), 5443–5454 (1994).

    Article  Google Scholar 

  102. M. A. Williamson, C. S. Kirby, and J. D. Rimstidt, “Iron dynamics in acid mine drainage,” In: 7th International Conference on Acid Rock Drainage 2006, ICARD (American Society of Mining and Reclamation, St. Louis, 2006), Vol. 3, pp. 2411–2423.

  103. D. Wilson, R. T. Amos, D. W. Blowes, J. B. Langman, C. J. Ptacek, L. Smith, and D. C. Sego, “Diavik Waste Rock Project: A conceptual model for temperature and sulfide content dependent geochemical evolution of waste rock – Laboratory scale,” Appl. Geochem. 89, 160–172 (2018a).

    Article  Google Scholar 

  104. D. Wilson, R. T. Amos, D. W. Blowes, J. B. Langman, L. Smith, and D. C. Sego, “Diavik Waste Rock Project: Scale-up of a reactive transport model for temperature and sulfide-content dependent geochemical evolution of waste rock,” Appl. Geochem. 96, 177–190 (2018b).

    Article  Google Scholar 

  105. M. D. Wunderly, D. W. Blowes, E. O. Frind, and C. J. Ptacek, “Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model,” Water Resour. Res. 32(10), 3173–3187 (1996).

    Article  Google Scholar 

  106. L. K. Yakhontova, and A. P. Grudev, Supergene Zone of Ore Deposits (MSU, Moscow, 1978) [in Russian].

    Google Scholar 

  107. J.-Y. Yu, M. Park, and J. Kim, “Solubilities of synthetic schwertmannite and ferrihydrite,” Geochem. J. 36, 119–132 (2002).

    Article  Google Scholar 

  108. L. V. Zamana and L. P. Chechel, “Geochemistry of drainage water of mining objects at the tungsten deposit from Gorkhon (Transbaikalia), Chem. Sustain. Development, 22 (3), 263–268 (2014).

    Google Scholar 

  109. X. Zhang, M. J. Borda, M. A. A. Schoonen, and D. R. Strongin, “Adsorption of phospholipids on pyrite and their effect on surface oxidation,” Langmuir 19, 8787–8792 (2003).

    Article  Google Scholar 

  110. Y. Zhou, M. D. Short, J. Li, R. C. Schumann, R. S. C. Smart, A. R. Gerson, and G. Qian, “Control of acid generation from pyrite oxidation in a highly reactive natural waste: A laboratory case study,” Minerals 7, 89 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks M.V. Mironenko for stimulating this study. The anonymous reviewer is thanked for constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alekseyev.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, V.A. Reasons for the Formation of Acidic Drainage Water in Dumps of Sulfide-Containing Rocks. Geochem. Int. 60, 78–91 (2022). https://doi.org/10.1134/S0016702922010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922010025

Keywords:

Navigation