Skip to main content
Log in

Spring Gas Geochemistry in the Weixi-Qiaohou Fault Zone: Understanding the Fluid Characteristics of the Western Boundary of the Sichuan-Yunnan Rhombic Block

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Weixi-Qiaohou fault zone (WQFZ) is located on the western edge of the Sichuan-Yunnan rhombic block. It connects the Red River fault zone (RRFZ) in the south with the Jinshajiang-Zhongdian fault zone (JZFZ) in the north. This study investigated the chemical components and isotopic compositions (He and C) of spring gas samples from the WQFZ. The 3He/4He ratios in hot and cold spring gases along the WQFZ ranged from 0.01 to 0.28 Ra. The majority of He isotopes indicate a crustal source. The δ13C values of CO2 ranged from −2.3 to −11.8‰. The CO2/3He vs δ13C relationship indicates that crustal limestone is the major contributor to the carbon inventory. The 3He/4He ratios of spring gases from the JZFZ, WQFZ, and RRFZ were compared. The WQFZ is an important part of the western boundary of the Sichuan-Yunnan rhombic block and had similar 3He/4He signatures as the JZFZ and RRFZ. The 3He/4He ratios (<1 Ra) of the three faults are mostly of crustal origin. The low 3He/4He ratios observed in the research area are associated with long-term radiogenic 4He dilution. The higher crustal thicknesses in the JZFZ and WQFZ compared with the RRFZ enhance the production of 4He and lower the 3He/4He ratios in surface gas emissions. However, some higher 3He/4He values found in the research area might be considered as the result of possible minor additions of mantle helium due to the existence of ductile shear zones in the lower crust. The WQFZ had lower 3He/4He values than the JZFZ and RRFZ, which might be attributable to lower fault permeability as a consequence of faulting activity. Furthermore, the 3He/4He ratios in the JZFZ are significantly higher than that of the WQFZ and closely related to strong earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. N. Andrews, “The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers,” Chem. Geol. 49, 339–351 (1985).

    Article  Google Scholar 

  2. D. H. Bai, M. J. Unsworth, M. A. Meju, X. Ma, J. Teng, X. Kong, Y. Sun, J. Sun, L. Wang, C. Jiang, C. Zhao, P. Xiao, and M. Liu, “Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging,” Nat. Geosci. 3, 358–362 (2010).

    Article  Google Scholar 

  3. X. W. Bao, X. X. Sun, M. J. Xu, D. W. Easton, X. D. Song, L. S. Wang, Z. F. Ding, N. Mi, H. Li, D. Y. Yu, Z. C. Huang, and P. Wang, “Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions,” Earth Planet. Sci. Lett. 415, 16–24 (2015).

    Article  Google Scholar 

  4. C. J. Ballentine and P. G. Burnard, “Production, Release and Transport of Noble Gases in the Continental Crust,” Rev. Mineral. Geochem. 47 (1), 481–538 (2002).

    Article  Google Scholar 

  5. C. J. Ballentine, B. Marty, B. Sherwood Lollar, and M. Cassidy, “Neon isotopes constrain convection and volatile origin in the Earth’s mantle,” Nature 433, 33–38 (2005).

    Article  Google Scholar 

  6. D. Bergfeld, F. Gof, and C. J. Janik, “Carbon isotope systematics and CO2 sources in the geyers-clear lake region, northern California, USA,” Geothermics 30, 303–331(2001).

    Article  Google Scholar 

  7. P. Burnard, S. Bourlange, P. Henry, et al., “Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara, Turkey) using helium isotopes,” Earth and Planet Science Letters 341–344, 68–78 (2012).

    Article  Google Scholar 

  8. A. Cauquoin, P. Jean-Baptiste, C. Risi, É. Fourré, B. Stenni and A. Landais, “The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations,” Earth Planet. Sci. Lett. 427, 160–170 (2015).

    Article  Google Scholar 

  9. Z. F. Chang, Y. F. Zhang, J. L. Li, and Y. Zang, “The geological and geomorphic characteristic of late quaternary activity of the Deqin–Zhongdian–Daju Fault,” J. Seismol. Res. 37 (1), 46-52 (2014) [in Chinese with English abstract].

    Google Scholar 

  10. Z. F. Chang, Y. F. Zhang, J. L. Li, Y. Zang, and B. Y. Dai, “Recent active features of Weixi–Qiaohou fault and its relationship with the Honghe fault,” J. Geomechanics 22 (3), 517–530 (2016) [in Chinese with English abstract].

    Google Scholar 

  11. Z. F. Chang, Y. Zang, and H. Chang, “New discovery of Holocene activity along the Weixi–Qiaohou Fault in southeastern margin of the Tibetan Plateau and its Neotectonic Significance,” Acta Geol. Sinica (English Edition) 92 (6), 408–409 (2018).

    Google Scholar 

  12. E. L. Cheng, “Recent tectonic stress field and tectonic movement of the Sichuan province and its vicinity,” Acta Seismol. Sinica 3 (3), 231–241 (1981) [in Chinese with English abstract].

    Google Scholar 

  13. G. A. M. de Leeuw, D. R. Hilton, N. Güleç, and H. Mutlu, “Regional and temporal variations in CO2/3He, 3He/4He and δ13C along the North Anatolian Fault Zone, Turkey,” Appl. Geochem. 25 (4), 524–539 (2010).

    Article  Google Scholar 

  14. J. Du, W. Cheng, Y. Zhang, C. Jie, Z. Guan, W. Liu, and L. Bai, “Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan,” Southwestern China. J. Asian Earth Sci. 26 (5), 533–539 (2006).

    Article  Google Scholar 

  15. T. P. Fischer, W. F. Giggenbach, Y. Sano, and S. N. Williams, “Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands,” Earth Planet. Sci. Lett. 160 (1–2), 81–96 (1998).

    Article  Google Scholar 

  16. J. Fiebig, G. Chiodini, S. Caliro, A. Rizzo, J. Spangenberg, and J. C. Hunziker, “Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic–hydrothermal systems,” Geochim. Cosmochim. Acta 68 (10), 2321–2334 (2004).

    Article  Google Scholar 

  17. A. L. Gilat, and A. Vol, “Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes,” Geosci. Front. 3, 911–921(2012).

    Article  Google Scholar 

  18. D. W. Graham, “Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs,” In: Noble Gases in Geochemistry and Cosmochemistry, (Ed. by D. Porcelli ), Rev. Mineral. Geochem. 47, 247–317 (2002).

    Google Scholar 

  19. S. M. Guo, F. J. Ji, H. F. Xiang et al., The Honghe Active Fault Zone (China Ocean Press, Beijing, 2001) [in Chinese].

    Google Scholar 

  20. D. R. Hilton, “The helium and carbon isotope systematics of a continental geothermal system: results from monitoring studies at Long Valley Caldera (California, U.S.A.),” Chem. Geol. 127, 269-295 (1996).

    Article  Google Scholar 

  21. D. R. Hilton, “Geochemistry- the leaking mantle,” Science 318, 1389–1390 (2007).

    Article  Google Scholar 

  22. J. L. Huang, D. P. Zhao, and S. H. Zheng, “Lithospheric structure and its relationship to seismic and volcanic activity in southwest China,” J. Geophys. Res. Solid Earth 107 (B10), ESE 13-1–ESE 13–14 (2002).

  23. W. E. Holt, J. F. Ni, T. C. Wallace, and A. J. Haines, “The active tectonics of the eastern Himalayan syntaxis and surrounding regions,” J. Geophys. Res. Solid Earth 96 (B9), 14595–14632 (1991).

    Article  Google Scholar 

  24. R. J. Kan, “Modern tectonic stress field in southwest China and activities of strong earthquakes,” Journal of Seismological Research, 3 (3), 45–59 (1980).

    Google Scholar 

  25. H. Kämpf, K. Bräuer, J. Schumann, and K. Hahne, “CO2 discharge in an active,non-volcanic continental rift area (Czech Republic): Characterisation (δ13C, 3He/4He) and quantification of diffuse and vent CO2 emissions,” Chem. Geol. 339, 71–83 (2013).

    Article  Google Scholar 

  26. B. M. Kennedy, M. C. van Soest, “Flow of mantle fluids through the ductile lower crust: helium isotope trends,” Science 318, 1433–1436 (2007).

    Article  Google Scholar 

  27. C. M. Kennedy, Y. K. Kharaka, W. C. Evans et al., “Mantle fluids in the San Andreas fault system, California,” Science 278, 1278–1281 (1997).

    Article  Google Scholar 

  28. J. T. Kulongoski, D. R. Hilton, P. H. Barry er al., “Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics,” Chem. Geol. 339, 92–102 (2013).

    Article  Google Scholar 

  29. P. Li, and L. M. Wang, “Exploration of the seismo-geological features of the Yunnan-West Sichuan region,” Scientia Geologica Sinica 4, 308–326(1975).

    Google Scholar 

  30. Q. L. Li, Y. Wang, Y. Y. Zhou, and C. P. Zhao, “Geochemical characteristics of hot spring gases from the Deqin-Zhongdian area, northwestern Yunnan, China,” Bull. Mineral. Petrol. Geochem. 37 (4), 645–651 (2018) [in Chinese with English abstract].

    Google Scholar 

  31. Q. L. Li, Y. Wang, Y. Y. Zhou, and C. P. Zhao, “The geothermal anomalies in Jianchuan-deqin region: constraints the Northwest Boundary of Sichuan-Yunnan Rhombic Block and Seismic Activity,” Bull. Mineral. Petrol. Geochem. 38, 1–13 (2019) [in Chinese with English abstract].

    Google Scholar 

  32. M. K. Li, S. X. Zhang, F. Wang et al., “Crustal and upper-mantle structure of the southeastern Tibetan Plateau from joint analysis of surface wave dispersion and receiver functions,” J. Asian Earth Sci. 117 (9), 52–63 (2016).

    Article  Google Scholar 

  33. Z. P. Li, M. X. Tao, L. W. Li et al., “Determination of isotope composition of dissolved inorganic carbon by gas-chromatography conventional isotope-ratio mass spectrometry,” Chinese J. Analyt. Chem. 35, 1455–1458 (2007).

    Article  Google Scholar 

  34. Z. Y. Lin, H. X. Hu, W.B. Zhang, H. F, Zhang, Z. Q. He, Z. M. Lin and T. X. Tao, “Crustal and upper-mantle velocity structure in western Yunnan, China,” Acta Seismol. Sinica, 15 (4), 427–440 (1993).

    Google Scholar 

  35. P. H. Leloup, R. Lacassin, and R. Tapponnier, “Kinematics of Tertiary left-lateral shearing at the lithospheric-scale in the Ailaoshan–Red River shear zone, Yunnan, China,” Tectonophysics 251, 3–84 (1995).

    Article  Google Scholar 

  36. J. E. Lupton, “Terrestrial inert gases-isotope tracer studies and clues to primordial components in the mantle,” Annu. Rev. Earth Planet. Sci. 11, 371–414 (1983).

    Article  Google Scholar 

  37. B. Marty, A. Jambon, “C/3He in volatile fluxes from the solid Earth: implication for carbon geodynamics,” Earth Planet. Sci. Lett. 83, 16–26 (1987).

    Article  Google Scholar 

  38. H. S. Ma, G. M. Zhang, X. Z. Wen, Q. Long and Z. G. Shao, “3-DP wave velocity structure tomographic inversion and its tectonic interpretation in southwest China,” 33(5), 591–602 (2008).

  39. N. M. Meqbel, G. D. Egber, P. E. Wannamaker et al., “Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of US Array magnetotelluric data,” Earth Planet. Sci. Lett. 402, 290–304 (2014).

    Article  Google Scholar 

  40. R. K. O’Nions, E. R. Oxburgh, “Helium, volatile fluxes and the development of the continental crust,” Earth Planet. Sci. Lett. 90, 331–347(1988).

    Article  Google Scholar 

  41. M. Ozima, F. A. Podosek, Noble Gas Geochemistry, (second ed. Cambridge Univ. Press, Cambridge, UK, 2002).

    Google Scholar 

  42. B. G. Polyak, M. D. Khutorskoi, I. L. Kamenskii, and E. M. Prasolov, “Mass heat flow from the mantle in the Mongolian area (from helium isotope and geothermal data),” Geokhimiya 12, 1693–1705 (1994).

    Google Scholar 

  43. Y. Sano, and H. Wakita, “Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism,” J. Geophys. Res. 90, 8729–8741 (1985).

    Article  Google Scholar 

  44. Y. Sano, and B. Marty, “Origin of carbon in fumarolic gas from island arcs,” Chem. Geol. 119, 265–74 (1995).

    Article  Google Scholar 

  45. L. Shen, D. Yuan, T. Ding, Y. Li, G. Le, and Y. Lin, “Distributing inhomogeneity of helium isotope of CO2 degasification point and its geotectogenesis in southwest of China,” Acta. Geol. Sinica. 81 (4), 475–489 (2007) [in Chinese with English abstract].

    Google Scholar 

  46. Z. K. Shen, J. N. Lu, M. Wang and R. Rurgmann, “Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau,” J. Geophys. Res/ 110, B11409 (2005).

    Google Scholar 

  47. B. D. Sun, J. P. Liu, X. H. Wang, Y. Dao, G. X. Xu, X. Z. Cui, X. Q. Guan, W. Wang and D. H. Song, “Geochemical characteristics and genetic type of a lithium ore (mineralized) body in the central Yunnan Province, China,” China Geology 3, 287–300 (2019).

    Google Scholar 

  48. M. X. Tao, Y. C. Xu, B. G. Shi et al., “The characteristics of mantle degassing and deep geological structure of different types of fracture zones in China,” Sci. China (Series D: Earth Science), 35 (5), 441–451 (2005) [in Chinese with English abstract].

    Google Scholar 

  49. P. Tapponnier, “Propogating extrusion tectonics in Aisa: New insights from simple experiments with plasticine,” Geology 10, 611–616 (1982).

    Article  Google Scholar 

  50. R. C. Tang, and W. B. Han, Active Faults and Earthquakes in Sichuan, (Seismological Pres, Beijing, 1993) [in Chinese].

    Google Scholar 

  51. M. M. Wang, S. Liu, B. X. Shi and C. C. Huang, “Geological and geomorphic investigation in the epicenter area of the Shangrila- Derong MS5.9 earthquake in 2013,” South China Journal of Seismology 37,80–88 (2017).

    Google Scholar 

  52. W. L. Wang, J. P. Wu, L. H. Fang, G. J. Lai, T. Yang and Y. Cai, “S wave velocity structure in southwest China from surface wave tomography and receiver functions,” J. Geophys. Res.-Solid Earth 119, 1061–1078 (2014).

    Article  Google Scholar 

  53. E. Wang, B. C. Burchfiel, L. H. Royden et al., “Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault systems of Southwestern Sichuan and Central Yunnan, China,” Geol. Soc. Am., 327, 1–108 (1998).

    Google Scholar 

  54. Y. Wang, Y. W. Liu, C. P. Zhao, Q. L. Li, Y. Y. Zhou and H. Ran, “Helium and carbon isotopic signatures of thermal spring gases in southeast Yunnan, China,” J. Volcanol. Geotherm. Res. 402, 106995 (2020).

    Article  Google Scholar 

  55. P. E. Wannamaker, T. G. Caldwell, G. R. Jiracek, et al., “Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand,” Nature, 460, 733–736 (2009).

    Article  Google Scholar 

  56. R. F. Weiss, “Solubility of helium and neon in water and seawater,” J. Chem. Eng. Data, 16 (2), 235–241 (1971).

    Article  Google Scholar 

  57. X. R. Ye, M. X. Tao, C. A. Yu, and M. J. Zhang, “Helium and neon isotopic compositions in the ophiolites from the Yarlung Zangbo River, Southwestern China: the information from deep mantle,” Science in China Series D: Earth Sciences 50, 801–812 (2007).

    Article  Google Scholar 

  58. G. Zandt, M. Leidig, J. Chmielowski, and D. Baumont, “Seismic detection and characterization of the Altiplano-Puna magma body, Central Andes,” Pure Appl. Geophys. 160, 789–807 (2003).

    Article  Google Scholar 

  59. K. Zhao, The Study of CO 2 Degassed from Deep Faults in Yunnan (Southwest University, Chongqing, 2006).

    Google Scholar 

  60. P. Zhang, “A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau,” Tectonophysics 584, 7–22 (2013).

    Article  Google Scholar 

  61. W. B. Zhang, J. G. Du, X. C. Zhou, and F. Wang, “Mantle volatiles in spring gases in the Basin and Range Province on the west of Beijing, China,” J. Volcanol. Geotherm. Res. 309, 45–52 (2016).

    Article  Google Scholar 

  62. J. G. Zhang, Y. Q. Xie, and M. P. Jin, Red River Fault Activity in China and Vietnam (Science and Technology Publishing House, Kunming, 2009) [in Chinese].

    Google Scholar 

  63. Z. Q. Zhang, H. J. Yao, and Y. Yang, “Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications,” Sci. China Earth Sci. 63, 1278–1293 (2020).

    Article  Google Scholar 

  64. X. C. Zhou, L. Liu, and Z. Chen, “Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau,” Appl. Geochem. 79, 17–26 (2017).

    Article  Google Scholar 

  65. X. C. Zhou, W. C. Wang, Z. Chen et al., “Hot spring gas geochemistry in western Sichuan province, China after the Wenchuan Ms 8.0 earthquake,” Terrestrial, Atmospheric and Oceanic Sciences 26, 361–373 (2015).

    Article  Google Scholar 

  66. X. C. Zhou, W.L. Wang, L. W. Li, J. M. Hou, L. T. Xing, Z. P. Li, H. Y. Shi and Y. C. Yan, “Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, Southeast Tibetan Plateau,” Acta Petrol. Sinica 36 (7), 2197 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is financially supported by the project of Science for Earthquake Resilience of China (XH20053Y). We are grateful to the anonymous reviewers and the editor for their useful comments and suggestions, which greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin Li.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY

All underlying data of the research study are included in the manuscript in the form of Tables 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qilin Li, Zhao, C., Wang, Y. et al. Spring Gas Geochemistry in the Weixi-Qiaohou Fault Zone: Understanding the Fluid Characteristics of the Western Boundary of the Sichuan-Yunnan Rhombic Block. Geochem. Int. 60, 109–121 (2022). https://doi.org/10.1134/S0016702921150027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921150027

Keywords:

Navigation