Skip to main content
Log in

Peritectic Reaction of Olivine in the Olivine–Jadeite–Diopside–Garnet–(C–O–H) System at 6 GPa as the Key Mechanism of the Magmatic Evolution in the Upper Mantle

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The melting relations in the olivine–jadeite–diopside–garnet–(С–О–H fluid) system, including metasomatic СО2 carbonatization of silicates and Н2О dissolution in silicate–carbonate melts, were studied in a physicochemical experiment at 6 GPa (under the conditions of the upper mantle). The influence of the С–O–H fluid (5.0 wt %, with equimolecular contents of Н2О and СО2) on the composition and temperature of the quasi-invariant peritectic reaction between olivine and jadeite-bearing melt with the formation of garnet was demonstrated. This reaction is the key element of the liquidus structure of silicate–fluid magmatic and silicate–carbonate–carbon–fluid diamond-forming systems. This is because this reaction controls the final episodes of the fractional ultramafic–mafic evolution of magmatic and diamond-forming melts in the upper mantle. The mode of fractional crystallization contributes to an increase in the concentration of jadeite and hydrous fluid components in the residual silicate–fluid and silicate–carbonate–fluid melts, which controls the sequential change in the total composition of these systems. The importance of the jadeite component in the bulk composition of the multicomponent magmatic system changes with its fractional accumulation from a minor component in ultramafic peridotite to a major (system-forming) component in mafic eclogite. According to the experimental data, the peritectic reaction of olivine retains its primary importance, since the C–O–H fluid components do not introduce radical qualitative changes in the melting relations of the ultramafic–mafic system olivine–jadeite–diopside–garnet–(C–O–H-fluid) at 6 GPa. At the same time, their participation in the composition of the system leads to quantitative topological changes in the parameters of its liquidus structure: a decrease in the temperatures of the solidus and liquidus boundaries by 120 and ~60–80°C, respectively, as well as a shift in the composition of the peritectic reaction of olivine with an increase in the concentration of olivine-bearing component by ~10 wt %. The significance of the peritectic reaction of olivine is discussed in the context of the general scenario of the ultramafic–mafic evolution of upper-mantle magmatism and the genesis of diamond, taking into account the role of the peritectic reaction of orthopyroxene at its early ultramafic stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 7.
Fig. 8.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. Y. Aranovich and R. C. Newton, “Experimental determination of CO2–H2O activity–composition relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydrotation rections,” Am. Mineral. 84, 1317–1332 (1999).

    Article  Google Scholar 

  2. T. Aulbach, T. Stachel, L. M. Heaman, and J. A. Garison, “Microxenoliths from the Slave Craton: archives of diamond formation along fluid conducts,” Lithos 126, 419–434 (2011).

    Article  Google Scholar 

  3. R. L. Bates and J. A. Jackson, Dictionary of Geological Terms, Third edition (Ancor Books, Doubleday, New York, 1983).

  4. P. M. Bell and B. T. C. Davis, “Melting relations in the system jadeite– diopside at 30 and 40 kb,” Am. J. Sci. A–267, 17–32 (1969).

    Google Scholar 

  5. A. P. Bobrievich, M. N. Bondarenko, L. M. Gnevushev, L. M. Krasov, G. I, Smirnov, and R. K. Yurkevich, Diamond Deposits of Yakutia (Geogeoltekhizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  6. A. P. Bobrievich, G. I. Smirnov, and V. S. Sobolev, “On the mineralogy of grossular–pyroxene–disthene (grospydite) xenoliths from Yakutian kimberlites,” Geol. Geofiz., No. 3, 18–24 (1960).

  7. B. T. C. Davis, “The system diopside–forsterite–pyrope at 40 kilobars,” In: Carnegie Institution Washington Yearbook. 63, 165–171 (1964).

  8. B. T. C. Davis and J. F. Shairer, “Melting relations in the diopside–forsterite–pyrope at 40 kilobars and one atmosphere,” In: Carnegie Institution Washington Yearbook 64, 123–136 (1965).

  9. J. B. Dawson, “Recent researches on kimberlite and diamond geology,” Econ. Geol. 63, 504–511 (1968).

    Article  Google Scholar 

  10. J. B. Dawson, Kimberlites and their Xenoliths (Springer–Verlag, Berlin, 1980).

    Book  Google Scholar 

  11. D. E. Ellis and P. J. Wyllie, “A model of phase relations in the system MgO–SiO2–H2O–CO2 and prediction of the compositions of liquids coexisting with forsterite and enstatite. In: Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry, Ed by F. R. Boyd and H. O. A. Meyer, (Amer. Geophys. Union, Washington, 1979), pp. 313–318.

  12. T. Gasparik and Yu. A. Litvin, “Stability of Na2Mg2Si2O7 and melting relations on the forsterite–jadeite join at pressures up to 22 GPa,” Eur. J. Mineral. 9, 311–326 (1997).

    Article  Google Scholar 

  13. D. H. Green, T. J. Falloon, and W. R. Taylor, “Mantle-derived magmas – role of variable source peridotite and variable C–H–O fluid compositions,” In: Magmatic Processes: Physicochemical Principles. A volume in Honor of Hatten S. Yoder, Jr., Ed. by B. O. Mysen, (University Park, Pennsylvania, 1987), pp. 139–154.

    Google Scholar 

  14. A. J. Irving and P. J. Wyllie, “Subsolidus and melting relations for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb,” Geochim. Cosmochim. Acta 39, 35–53 (1975).

    Article  Google Scholar 

  15. E. S. Izraeli, J. H. Harris, and O. Navon, “Brine inclusions in diamonds: a new upper mantle fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  16. F. V. Kaminsky, The Earth’s Lower Mantle (Springer Geology, 2019).

    Google Scholar 

  17. H. Keppler and A. Audetat, “Fluid–mineral interaction at high pressure,” In: Mineral Behaviour at Extreme Conditions, Ed. by R. Miletich (Eotvos Univ. Press, Budapest, 2005), pp. 225–251.

    Google Scholar 

  18. D. M. Kerrick and G. K. Jacobs, “A modified Redlich–Kwong equation for H2O, CO2 and H2O–CO2 mixtures at elevated pressures and temperatures,” Am. J. Sci. 281, 735–767 (1981).

    Article  Google Scholar 

  19. A. M. Koziol and R. C. Newton, “Experimental determination of the reaction magnesite + enstatite = forsterite + CO2 in the range 6–25 kbar and 700–1100°C,” Am. Mineral. 83, 213–219 (1998).

    Article  Google Scholar 

  20. V. Yu. Litvin, T. Gasparik, and Yu. A. Litvin, “The system enstatite – nepheline in experiments at 6.5–13.5 GPa: importance of Na2Mg2Si2O7 for the melting of nepheline–normative mantle,” Geochem. Int. 38 (suppl. 1), 100–107 (2000).

    Google Scholar 

  21. Yu. A. Litvin, Physicochemical Study of Melting Relations of the Deep–seated Earth’s Substance (Nauka, Moscow, (1991) [in Russian].

    Google Scholar 

  22. Yu. A. Litvin, “High-pressure mineralogy of diamond genesis,” In: Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 83–103 (2007).

  23. Yu. A. Litvin, Genesis of Diamonds and Associated Phases (Springer Mineralogy, 2017).

    Book  Google Scholar 

  24. Yu. A. Litvin and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 372 (6), 867–870 (2000).

    Google Scholar 

  25. Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamentals of mantle carbonatite concept of diamond genesis,” Geochem. Int. 50(10), 839–857 (2016).

    Article  Google Scholar 

  26. Yu. A. Litvin, A. V. Kuzyura, and E. V. Limanov, “The role of garnetization of olivine in the olivine–diopside–jadeite system in the ultramafic–mafic evolution of upper-mantle magmatism (experiment at 6 GPa),” Geochem. Int. 57(10), 1045–1065 (2019).

    Article  Google Scholar 

  27. Yu. A. Litvin, A. V. Kuzyura, A. V. Bovkun, D. A. Varlamov, E. V. Limanov, and V. K. Garanin, “Genesis of diamondiferous rocks from upper–mantle xenoliths in kimberlite,” Geochem. Int. 58 (3), 245–270 (2020).

    Article  Google Scholar 

  28. Yu. A. Litvin, A. V. Kuzyura, and A. V. Spivak, “Evolution of mantle magmatism and formation of the ultrabasic–basic rock series: importance of peritectic reactions of the rock-forming minerals,” In: Advances in Experimental and Genetic Mineralogy. Special Publication to 50th Anniversary of D.S. Korzhinskii Institute of Experimental Mineralogy, Ed. by Yu. A. Litvin and O. G. Safonov (Springer Mineralogy, 2020), pp. 165–199.

    Google Scholar 

  29. A. M. Logvinova, R. Wirth, E. N. Fedorova, and N. V. Sobolev, “Nanometre–sized mineral and fluid inclusions in cloudy Siberian diamonds: new insight on diamond formation,” Eur. J. Mineral. 20, 1223–1233 (2008).

    Article  Google Scholar 

  30. A. M. Logvinova, L. A. Taylor, E. N. Fedorova, A. P. Eliseeva, R. Wirth, G. Howarth, V. N. Reutsky, and N. V. Sobolev, “A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe (Yakutia): role of subduction in diamond formation,” Russ. Geol. Geophys. 56 (1–2), 306–320 (2015).

    Article  Google Scholar 

  31. I. D. MacGregor and J. L. Carter, “The chemistry of clinopyroxenes and garnets of eclogite and periotite xenoliths from Roberts Victor Mine, South Africa,” Phys. Earth Planet. Int., No. 3), 391–379 (1970).

  32. A. A. Marakushev, “Peridotite nodules in kimberlites as indicators of deep lithosphere structure,” in Reports of Russian Geologists at the 27 th International Session of the International Geological Congress. Petrology (Nauka, Moscow, 1984), pp. 153–160 [in Russian].

  33. M. Mathias and P. C. Rickwood “Ultramafic xenoliths in the Masoku kimberlite pipe,” Geol. Soc. S. Afr. Spec. Publ. 2, 359–369 (1969).

    Google Scholar 

  34. M. Mathias, I. C. Siebert, and P. C. Rickwood, “Some aspects of the mineralogy and petrology in ultramafic xenoliths in kimberlite,” Contrib. Mineral. Petrol. 26, 75–123 (1970).

    Article  Google Scholar 

  35. O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle derived fluids in diamond micro-inclusions,” Nature 355 (6193), 784–789 (1988).

    Article  Google Scholar 

  36. M. J. O’Hara, “The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks,” Earth–Sci. Rev., No. 4, 69–133 (1968).

  37. M. J. O’Hara and H. S. Yoder, “Formation and fractionation of basic magmas at high pressures,” Scott. J. Geol., No. 3, 67–117 (1967).

  38. L. S. Palatnik and A. I. Landau, Phase Equilibria in Multicomponent Systems (Holt, Rimehart and Winston Inc., New York, 1964).

  39. L. N. Pokhilenko, V. G. Mal’kovets, D. V. Kuz’min, and N. P. Pokhilenko, “New data on the mineralogy of megacrystalline pyrope peridotite from the Udachnaya kimberlite pipe, Siberian Craton, Yakutian Diamondiferous Province,” Dokl. Earth Sci. 454, 179–184 (2014).

    Article  Google Scholar 

  40. M. Prinz, D. V. Manson, P. F. Hlava, and K. Keil “Inclusions in dimonds: garnet lherzolite and eclogite assemblages,” Phys. Chem. Earth, No. 9, 797–816 (1975).

    Google Scholar 

  41. A. M. Reid, R. W. Brown, J. B. Dawson, G. G. Whitfield, and J. C. Siebert, “Garnet and pyroxene compositions in some diamondiferous eclogites,” Contrib. Mineral. Petrol. 58, 203–220 (1976).

    Article  Google Scholar 

  42. F. N. Rhines, Phase Diagrams in Metallurgy: Their Developments and Application (McGraw–Hill Book Company, London, 1956).

    Google Scholar 

  43. P. C. Rickwood and M. Mathias, “On diamondiferous eclogites xenoliths in kimberlite,” Lithos (3), 223–235 (1970).

  44. A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw–Hill, New York, 1975).

    Google Scholar 

  45. A. Saul and W. Wagner, “A fundamental equation of water covering the range from the melting line to 1273 K at pressures up to 25000 MPa,” J. Phys. Chem. 18, 1537–1564 (1989).

    Google Scholar 

  46. M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58, 761–771 (1994).

    Article  Google Scholar 

  47. A. F. Shatskiy, K. D. Litasov, and Yu. N. Palyanov, “Phase relations in carbonate systems at pressures and temperatures of lithospheric mantle: review of experimental data,” Russ. Geol. Geophys. 56 (1–2), 113–142 (2015).

    Article  Google Scholar 

  48. J. R. Smyth and C. J. Hatton, “A coesite–sanidine grospydite from the Roberts Victor kimberlite,” Earth Planet. Sci. Lett. 34, 284–290 (1977).

    Article  Google Scholar 

  49. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and the Problem of the Upper Mantle Composition (Am. Geophys. Union, Washington, 1977).

  50. N. V. Sobolev, E. S. Efimova, V. I. Koptil, Yu. G. Lavrentiev, and V. S. Sobolev, “Inclusions of coesite, garnet, and omphacite in Yakutian diamonds – first find of coesite,” Dokl. Akad. Nauk SSSR 230, 1442–1444 (1976).

    Google Scholar 

  51. N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, N. P. Pokhilenko, D. V. Kuzmin, and A. V. Sobolev, “Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia,” Lithos 112S, 701–713 (2009).

    Article  Google Scholar 

  52. V. S. Sobolev, B. S. Nai, N. V. Sibolev, Yu. G. Lavrentiev, and L. N. Pospelova, “Xenoliths of diamondiferous pyrope serpentinites from Aikhal pipe, Yakutia,” Dokl. Akad. Nauk SSSR 188, 1141–1143 (1969).

    Google Scholar 

  53. N. A. Solopova, A. V. Spivak, Yu. A. Litvin, and L. S. Dubrovinsky, “Melting and breakdown of MgCO3 at high pressures,” Phys. Chem. Miner. 42, 73–81 (2014).

    Article  Google Scholar 

  54. Z. V. Spetsius, I. N. Bogush, and O. E. Kovalchuk, “FTIR mapping of diamond plates of eclogitic and peridotitic xenoliths from the Nyurbinskaya pipe (Yakutia): genetic implications,” Russ. Geol. Geophys. 56 (1–2), 344–353 (2015).

    Article  Google Scholar 

  55. T. Stachel, G. P. Brey, and J. W. Harris, “Inclusions in sublithospheric diamonds: glimpses of deep Earth,” Elements 1, 73–78 (2005).

    Article  Google Scholar 

  56. R. B. Symonds, W. I. Rose, G. J. S. Bluth, and T. M. Gerlach, “Volcanic gas studies: methods, results, and applications,” In: Volatiles in Magmas, Ed. by M. R. Carroll and J. R. Holloway, Mineral. Soc. Am. 30, 1–66 (1994).

  57. S. V. Titkov, A. I. Gorshkov, Yu. P. Solodova, I. D. Ryabchikov, L. O. Magazina, A. V. Sivtsov, M. D. Gasanov, E. A. Sedova, and G. G. Samosorov, “Mineral microinclusions in cubic diamonds from the Yakutian deposits based on analytical electron microscopy data,” Dokl. Earth Sci. 410 (7), 1106–1109 (2006).

    Article  Google Scholar 

  58. A. A. Tomilenko, A. I. Chepurov, Yu. N. Palyanov, N. P. Pokhilenko, and A. P. Shebanin, “Volatiles in upper mantle: evidence from fluid inclusion data,” Geol. Geofiz. 38 (1), 276–285 (1997).

    Google Scholar 

  59. J. V. Walther and P. M. Orville, “The extraction-quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures,” Am. Mineral. 68, 731–741 (1983).

    Google Scholar 

  60. W. Wang, “Formation of diamonds with mineral inclusions of “mixed” eclogite and peridotite parageneses. Earth Planet Sci. Lett. 160, 831–843 (1998).

    Article  Google Scholar 

  61. J. K. Weidner, “Equilibria in the system Fe–C–O; Part. I. Siderite–magnetite–carbon–vapor equilibrium from 500 to 10.000 bars,” Amer. J. Sci. 272, 735–751 (1972).

    Article  Google Scholar 

  62. H. S. Yoder, Generation of Basaltic Magma (Nat. Acad. Sci., Washington, 1976).

    Google Scholar 

  63. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlte pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68, 61–73 (2004).

    Article  Google Scholar 

  64. D. A. Zedgenizov, S. Rege, W. L. Griffin, H. Kagi, and V. S. Shatsky, “Composition of trapped fluids in cuboid diamonds from the Udachnaya kimberlite: LAM–ICPMS analysis,” Chem. Geol. 240, 151–162 (2007).

    Article  Google Scholar 

Download references

Funding

This study was carried out as a part of program no. AAAA-A18-118020590140-7 of the Institute of Experimental Mineralogy, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Translated by A. Bobrov

This paper and two following papers (Tomilenko et al. and Vinogradova et al.) complete the special issue “Geochemistry of the Earth’s mantle: experiment and nature” (n. 8, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Kuzyura, A.V. Peritectic Reaction of Olivine in the Olivine–Jadeite–Diopside–Garnet–(C–O–H) System at 6 GPa as the Key Mechanism of the Magmatic Evolution in the Upper Mantle. Geochem. Int. 59, 813–839 (2021). https://doi.org/10.1134/S0016702921080048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080048

Keywords:

Navigation