Skip to main content
Log in

Influence of C–O–H Volatiles on Ni, Co, and P Partition between Silicate Melt and Liquid Metal Fe Alloy at 4 GPa, 1550°C

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A set of experiments was carried out in the system NaAlSi3O8–FeO–NiO–CoO–SiC–NaH2PO4 at 1550°C, 4 GPa, and oxygen fugacity (fO2) 0.5–2.9 log. units below the iron–wüstite (IW) buffer to estimate how C–O–H components can affect Ni, Co, and P partition between silicate melt and a liquid metallic phase at redox conditions under which the metallic phase is segregated into melting products of the early reduced mantles of the Earth and other planetary bodies. It has been established that the Ni, Co, and P partition coefficients D(М)met/sil between silicate melts saturated with carbon and containing dissolved C–O–H volatiles (mainly in the form of OH groups, H2 and CH4) at relatively oxidized conditions (fO2 > IW – 1.5) correspond to D(М)met/sil values expected of metal–silicate melt equilibrium in volatile-free systems at analogous P, T, fO2, and nbo/t parameters. Under more reduced conditions (fO2 ≤ IW – 2), the presence of C–O–H volatiles leads to a decrease in D(М)met/sil for Ni and P compared to that in “dry” melts. This difference increases with decreasing fO2 and reaches ~0.5 and more than one order of magnitude for Ni and P, respectively, at fO2 = IW – 2.9. The effect of volatiles on D(Co)met/sil is much weaker, and hence, a decrease in fO2 leads to that D(Ni)met/sil and D(Co)met/sil converge. The Raman spectra of the experimental glasses and their SIMS analyses for hydrogen show that water content (OH + H2O) in the melts decreases with decreasing fO2, whereas the contents of CH4 and complexes with C–H bonds significantly increases. The likely reasons for the decrease in D(М)met/sil under strongly reduced conditions may be changes in the structure of the silicate melts and the origin of complex compounds of siderophile elements with volatiles in these melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. According to experimental data, throughout the whole fO2 range (from IW to IW – 3), the valence of cobalt is 2+ (1300–2200°C, 0.001–5 GPa), and that of phosphorus is 5+ (1190–1600°C, 0.001 GPa) (see Siebert et al., 2011, Suppl. E, for a review of the experimental data.)

  2. The M–Fe exchange partition coefficient) between metal alloy and silicate melt can be expressed in a general form through the partition coefficients D(Mi)met/sil and D(Fe)met/sil as Kd(M–Fe)met/sil = (D#(Mi)met/sil/D#(Fe)met/sil)n/2 = (D(Mi)met/sil/D(Fe)met/sil)n/2β(n/2 – 1), where β is a recalculation coefficient (see Eq. (6)). For bivalent Ni and Co, this expression has a simpler form Kd(M–Fe) = D(Mi)met/sil/D(Fe)met/sil.

REFERENCES

  1. Y. Abe and T. Matsui, “The formation of an impact–generated H2O atmosphere and its implications for the early thermal history of the Earth,” J. Geophys. Res. 90 (suppl.), C545–C559 (1985).

    Article  Google Scholar 

  2. A. A. Borisov, “Experimental study of the influence of SiO2 on the solubility of cobalt and iron in silicate melts,” Petrology 15 (6), 523–529 (2007).

    Article  Google Scholar 

  3. Chi Han, R. Dasgupta, M. S. Duncan, and N. Shimizu, “Partitioning of carbon between Fe–rich alloy melt and silicate melt in a magma ocean – Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon,” Geochim. Cosmochim. Acta 139, 447–471 (2014).

    Article  Google Scholar 

  4. V. Clesi, M. A. Bouhifd, N. Bolfan–Casanova, G. Manthilake, A. Fabbrizio, and D. Andrault, “Effect of H2O on metal–silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars,” Geochim. Cosmochim. Acta 192, 97–121 (2016).

    Article  Google Scholar 

  5. R. Dasgupta, Ananya Mallik, K. Tsuno, C. Withers Anthony, Hirth Greg, and Marc M. Hirschmann, “Carbon–dioxide-rich silicate melt in the Earth’s upper mantle,” Nature 493, 211–215 (2013).

    Article  Google Scholar 

  6. C. D. Doyle and A. J. Naldrett, “Ideal mixing of divalent cations in mafic magma and its effect on the solution of ferrous oxide,” Geochim. Cosmochim. Acta 50, 435–443 (1986).

    Article  Google Scholar 

  7. M. J. Drake, H. E. Newsom, and C. J. Capobianco, “V, Cr, and Mn in the Earth, Moon EPB and SPB and the origin of the Moon: experimental studies,” Geochim. Cosmochim. Acta 53, 2101–2111 (1989).

    Article  Google Scholar 

  8. R. A. Fischer, Y. Nakajima, A. J. Campbell, D. J. Frost, D. Harries, F. Langenhorst, N. Miyajima, K. Pollok, and D. C. Rubie, “High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O,” Geochim. Cosmochim. Acta 167, 177–194 (2015).

    Article  Google Scholar 

  9. D. Frost, U. Mann, Y. Asahara, and D. Rubie, “The redox state of the mantle during and just after core formation,” Philos. Trans. Roy. Soc. A366, 4315–4337 (2008).

    Article  Google Scholar 

  10. L. J. Hallis, G. R. Huss, K. Nagashima, G. J. Taylor, S. A. Halldórsson, D. R. Hilton, M. J. Mottl, and K. J. Meech, “Evidence for primordial water in Earth’s deep mantle,” Science 350 (6262), 795–797 (2015).

    Article  Google Scholar 

  11. M. M. Hirschmann, “Fe–carbonyl is a key player in planetary magmas,” Proc. Nat. Acad. Sci. 110 (20), 7967–7968 (2013).

    Article  Google Scholar 

  12. M. M. Hirschmann, A. C. Withers, P. Ardia, and N. T. Foley, “Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets,” Earth Planet Sci. Lett. 345–348, 38–48 (2012).

    Article  Google Scholar 

  13. A. Holzheid, H. Palme, and S. Chakraborty, “The activities of NiO, CoO and FeO in silicate melts,” Chem. Geol. 139, 21–38 (1997).

    Article  Google Scholar 

  14. D. Jana and D. Walker, “Core formation in the presence of various C–H–O volatile species,” Geochim. Cosmochim. Acta 63, 2299–2310 (1999).

    Article  Google Scholar 

  15. D. Jana and D. Walker, “The impact of carbon on element distribution during core formation,” Geochim. Cosmochim. Acta 61, 2759–2763 (1997a).

    Article  Google Scholar 

  16. D. Jana and D. Walker, “The influence of sulfur on partitioning of siderophile elements,” Geochim. Cosmochim. Acta 61, 5255–5277 (1997b).

    Article  Google Scholar 

  17. E. Jarosewich, “Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses,” Meteoritics 25, 323–338 (1990).

    Article  Google Scholar 

  18. J. H. Jones and M. J. Drake, “Experimental investigations of trace element fractionation in iron meteorites, II: The influence of sulfur,” Geochim. Cosmochim. Acta 47, 1199–1209 (1983).

    Article  Google Scholar 

  19. A. A. Kadik, F. Pineau, Y. Litvin, N.Jendrzejewski, I. Martinez, and M. Javoy, “Formation of carbon and hydrogen species in magmas at low oxygen fugacity,” J. Petrol. 45, 1297–1310 (2004).

    Article  Google Scholar 

  20. A. A. Kadik, Yu. A. Litvin, V. V. Koltashev, E. B. Kryukova, and V. G. Plotnichenko, “Solubility of Hydrogen and carbon in reduced magmas of the early Earth’s mantle,” Geochem. Int. 44 (1), 38–53 (2006).

    Google Scholar 

  21. A. A. Kadik, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solution behavior of C–O–H volatiles in FeO–Na2O–Al2O3–SiO2 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550°C,” Geochem. Int. 52(9), 707–725 (2014).

    Article  Google Scholar 

  22. S. C. Kohn, M. E. Smith, P. J. Dirken, E. R. H. van Eck, A. P. M. Kentgens, and R. Dupree, “Sodium environments in dry and hydrous albite glasses: Improved 23Na solid state NMR data and their implications for water dissolution mechanisms,” Geochim. Cosmochim. Acta 62, 79–87 (1998).

    Article  Google Scholar 

  23. Li Yuan, R. Dasgupta, and K. Tsuno, “The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe–rich alloy and silicate melt systems at 3 GPa and 1600°C: Implications for core–mantle differentiation and degassing of magma oceans and reduced planetary mantles,” Earth Planet Sci. Lett. 415, 54–66 (2015).

    Article  Google Scholar 

  24. R. W. Luth, B. O. Mysen, and D. Virgo, “Raman spectroscopic study of the solubility behavior of H2 in the system Na2O–Al2O3–SiO2–H2,” Am. Mineral. 72, 481–486 (1987).

    Google Scholar 

  25. Z. Ma, “Thermodynamic description for concentrated metallic solutions using interaction parameters,” Metall. Mater. Trans. B32, 87–103 (2001).

    Article  Google Scholar 

  26. M. Ya. Marov and S. I. Ipatov, “Delivery of water and volatiles to the terrestrial planets and the Moon,” Solar Syst. Res. 52 (5), 392–400 (2018).

    Article  Google Scholar 

  27. B. Marty, “The origins and concentrations of water, carbon, nitrogen and noble gases on Earth,” Earth Planet Sci. Lett. 313–314, 56–66 (2012).

    Article  Google Scholar 

  28. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, and M. Rubin, “Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSE-TTA cometary mission,” Earth Planet Sci. Lett. 441, 91–102 (2016).

    Article  Google Scholar 

  29. A. Morbidelli, J. Chambers, J. I. Lunine, J. Petit, F. Robert, G. Valsecchi and K. Cyr, “Source regions and timescales for the delivery of water to the Earth,” Meteor. Planet. Sci. 35, 1309–1320 (2000).

    Article  Google Scholar 

  30. B. O. Mysen, “Relations between structure, redox equilibria of iron, and properties of magmatic liquids,” Physical Chemistry of Magmas, Ed. by L. L. Perchuk and I. Kushiro, (Springer–Verlag, New York, 1991), Vol. 9, pp. 41–98.

    Google Scholar 

  31. B. O. Mysen and D. Virgo, “Volatiles in silicate melts at high pressure and temperature. 2. Water in melts along the join NaA1O2–SiO2 and a comparison of solubility mechanisms of water and fluorine,” Chem. Geol. 57, 333–358 (1986).

    Article  Google Scholar 

  32. B. O. Mysen, K. Kumamoto, G. D. Cody, and M. L. Fogel, “Solubility and solution mechanisms of C–O–H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures,” Geochim. Cosmochim. Acta 75, 6183–6199 (2011).

    Article  Google Scholar 

  33. B. O. Mysen, M. L. Fogel, P. L. Morrill, and G. D. Cody, “Solution behavior of reduced C–O–H volatiles in silicate melts at high pressure and temperature,” Geochim. Cosmochim. Acta, 73, 1696–1710 (2009).

    Article  Google Scholar 

  34. D. P. O’Brien, K. J. Walsh, A. Morbidelli, S. N. Raymond, and A. M. Mandell, ‘Water delivery and giant impacts in the Grand Tack scenario,” Icarus 239, 74–84 (2014).

    Article  Google Scholar 

  35. H. St. C. O’Neill and S. M. Eggins, “The effect of melt composition on trace elements partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts,” Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  36. H. Palme, Ph. Kegler, A. Holzheid, D. J. Frost, and D. C. Rubie, “Comment on "Prediction of metal–silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal–silicate equilibrium during accretion of the Earth” by K. Righter, EPSL 304 (2011) 158–167, 2011,” Earth Planet Sci. Lett. 312, 516–518 (2011).

    Article  Google Scholar 

  37. C. G. Pouchert, The Aldrich Library of Infrared Spectra, 3rd ed. (Aldrich Chemical Co, 1981).

    Google Scholar 

  38. K. Righter, “Prediction of metal–silicate partition coefficients for siderophile elements: an update and assessment of PT conditions for metal–silicate equilibrium during accretion of the Earth,” Earth Planet Sci. Lett. 304, 158–167 (2011).

    Article  Google Scholar 

  39. K. Righter, “Modeling siderophile elements during core formation and accretion, and the role of the deep mantle and volatiles,” Am. Mineral. 100, 1098–1109 (2015).

    Article  Google Scholar 

  40. K. Righter and M. J. Drake, “Effect of water on metal–silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation,” Earth Planet Sci. Lett. 171, 383–399 (1999).

    Article  Google Scholar 

  41. K. Righter, M. J. Drake, and G. Yaxley “Prediction of siderophile element metal–silicate partition coefficients to 20 GPa and 2800°C: the effects of pressure, temperature, oxygen fugacity, and silicate and metallic melt compositions,” Phys. Earth Planet Inter. 100, 115–134 (1997).

    Article  Google Scholar 

  42. D. C. Rubie, D. J. Frost, Ute Mann, Y. Asahara, F. Nimmo, K. Tsuno, Ph. Kegler, A. Holzheid, and H. Palme, “Heterogeneous accretion, composition and core–mantle differentiation of the Earth,” Earth Planet Sci. Lett., 301, 31–42 (2011).

    Article  Google Scholar 

  43. I. D. Ryabchikov and L. N. Kogarko, “FeO activity and oxygen potential in magnesian magmas,” Geochem. Int. 51 (12), 949–958 (2013).

    Article  Google Scholar 

  44. A. R. Sarafian, S. G. Nielsen, H. R. Marschall, F. M. McCubbin, and B. D. Monteleone, “Early accretion of water in the inner solar system from a carbonaceous chondrite–like source,” Science, 346, 623–626 (2014).

    Article  Google Scholar 

  45. J. Siebert, A. Corgne, and F. J. Ryerson, “Systematics of metal–silicate partitioning for many siderophile elements applied to Earth’s core formation,” Geochim. Cosmochim. Acta 75, 1451–1489 (2011).

    Article  Google Scholar 

  46. J. Siebert, J. Badro, D.Antonangeli, and F. J. Ryerson, “Metal–silicate partitioning of Ni and Co in a deep magma ocean,” Earth Planet Sci. Lett. 321–322, 189–197 (2012).

    Article  Google Scholar 

  47. A. V. Sobolev and M. Chaussidon, “H2O concentrations in primary melts from supra–subduction zones and mid–ocean ridges: implications for H2O storage and recycling in the mantle,” Earth Planet Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  48. B. D. Stanley, M. M. Hirschmann, and A. C. Withers, “Solubility of C–O–H volatiles in graphite–saturated martian basalts,” Geochim. Cosmochim. Acta 129, 54–76 (2014).

    Article  Google Scholar 

  49. M. J. Toplis, “The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems,” Contrib. Mineral. Petrol. 149, 22–39 (2005).

    Article  Google Scholar 

  50. H. Wänke and G. Dreibus, “Chemical composition and accretion history of terrestrial planets,” Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 325, 545–557 (1988).

  51. D. T. Wetzel, M. J. Rutherford, S. D. Jacobsen, E. H. Hauri, and A. E. Saal, “Degassing of reduced carbon from planetary basalts,” Proc. Nat. Acad. Sci. 110 (20), 8010–8013 (2013).

    Article  Google Scholar 

  52. B. J. Wood, M. J.Walter, and J. Wade, “Accretion of the Earth and segregation of its core,” Nature 441, 825–833 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank B.N. Ryzhenko and O.I. Yakovlev for discussion of the manuscript and for valuable comments.

Funding

This study was carried out under government-financed project 0137-2019-0017 for the Vernadsky Institute and was supported by the Russian Foundation for Basic Research, project no. 17-05-00713, and by Program I.16 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Lukanin, T. I. Tsekhonya or V. V. Koltashev.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukanin, O.A., Tsekhonya, T.I., Koltashev, V.V. et al. Influence of C–O–H Volatiles on Ni, Co, and P Partition between Silicate Melt and Liquid Metal Fe Alloy at 4 GPa, 1550°C. Geochem. Int. 58, 670–686 (2020). https://doi.org/10.1134/S0016702920060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920060063

Keywords:

Navigation