Skip to main content
Log in

Composition and Geochemical Specifics of Magmatic Melts in Kamchatka: Evidence from Melt Inclusions and Quenched Glasses of Rocks

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The mean concentrations of volatiles, major, and trace elements are estimated in the magmatic melts of Kamchatka based on an our database that includes analyses of melt inclusions and quenched glasses of rocks for 75 elements (the database comprised 1 900 000 analyses as of late 2018). The determined concentrations are compared with analogous characteristics of melts from island arcs and active continental margins. The distribution of SiO2 concentrations (more than 105 000 analyses) in natural magmatic melts from all geodynamic environments is obviously bimodal, with maxima at SiO2 = 50–52 and 72–76 wt %. The paper presents binary diagrams that show the concentrations of major, volatile, trace elements, and REE and diagrams of the normalized patterns average concentrations of elements in the magmatic melts. The diagrams show distinguishing features of the melts of Kamchatka, for example, the elevated Ba/Nb ratios of Kamchatka mafic melts compared to those of melts in other zones, which may reflect a high content of subduction-related material during the derivation of the Kamchatka melts, with their Th deficit controlled by specifics of the fluid regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Auer, I. Bindeman, P. Wallace, V. Ponomareva, and M. Portnyagin, “The origin of hydrous, high–delta O-18 voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia,” Contrib. Mineral. Petrol. 157, 209–230 (2009).

    Article  Google Scholar 

  2. G. P. Avdeiko, S. V. Popruzhenko, and A. A. Palueva, “The tectonic evolution and volcano–tectonic zonation of the Kuril–Kamchatka island-arc system,” Geotectonics 36 (4), 312–327 (2002).

    Google Scholar 

  3. G. P. Avdeiko, A. A. Palueva, and O. A. Khleborodova, “Geodynamic conditions of volcanism and magma formation in the Kurile–Kamchatka island-arc system,” Petrology 14 (3), 230–246 (2006).

    Article  Google Scholar 

  4. A. D. Babansky, I. P. Solovova, I. D. Ryabchikov, and O. A. Bogatikov, “Primary magmas of the alkali-earth series: evidence from melt microinclusions,” Dokl. Akad. Nauk SSSR 253(4), 945–947 (1980).

    Google Scholar 

  5. S. T. Balesta, “Structure of the Earth’s crust and magmatic chambers of modern volcanic areas of Kamchatka,” Active Voclanoes of Kamchatka, 1, 36–45 (1991).

    Google Scholar 

  6. A. Benard, K. T. Koga, N. Shimizu, M. A. Kendrick, D. A. Ionov, O. Nebel, and R. J. Arculus, “Chlorine and fluorine partition coefficients and abundances in sub–arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones,” Geochim. Cosmochim. Acta 199, 324–350 (2017).

    Article  Google Scholar 

  7. A. Benard, O. Nebel, D. A. Ionov, R. J. Arculus, N. Shimizu, and N. Metrich, “Primary silica–rich picrite and high-Ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub–arc mantle,” J. Petrol. 57 (10), 1955–1982 (2016).

    Article  Google Scholar 

  8. I. N. Bindeman, V. V. Ponomareva, J. C. Bailey, and J. W. Valley “Volcanic arc of Kamchatka: a province with high–18O magma sources and large–scale 18O/16O depletion of the upper crust,” Geochim. Cosmochim. Acta 68, 841–865 (2004).

    Article  Google Scholar 

  9. J. Blundy, K. Cashman, and M. Humphreys “Magma heating by decompression–driven crystallization beneath andesite volcanoes,” Nature 443, 76–80 (2006).

    Article  Google Scholar 

  10. I. A. Burikova and O. V. Parfenova, “Allivalites as indicators of fractional crystallization of the Island arc calc alkaline low K series,” Geochem. Int. 51 (1), 33–43 (2013).

    Article  Google Scholar 

  11. T. Churikova, F. Dorendorf, and G. Wörner, “Sources and fluids in the mantle wedge below Kamchatka, evidence from across–arc geochemical variation,” J. Petrol. 42 (8), 1567–1593 (2001).

    Article  Google Scholar 

  12. T. Churikova, G. Worner, N. Mironov, and A. Kronz “Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc,” Contrib. Mineral. Petrol. 154, 217–239 (2007).

    Article  Google Scholar 

  13. N. L. Dobretsov, V. A. Simonov, A. V. Kotlyarov, R. Yu. Kulakov, and N. S. Karmanov, “Physicochemical parameters of crystallization of melts in intermediate suprasubduction chambers (by the example of Tolbachik and Ichinskii volcanoes, Kamchatka Peninsula),” Russ. Geol. Geophys. 57 (7), 993–1015 (2016).

    Article  Google Scholar 

  14. M. Edmonds, “Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites,” Earth Planet. Sci. Lett. 411, 142–150 (2015).

    Article  Google Scholar 

  15. P. I. Fedorov, D. V. Kovalenko, T. B. Bayanova, and P. A. Serov, “Early Cenozoic magmatism in the continental margin of Kamchatka,” Petrology 16 (3), 261–278 (2008).

    Article  Google Scholar 

  16. T. I. Frolova, P. Y. Plechov, P. L. Tikhomirov, and S. V. Churakov, “Melt inclusions in minerals of allivalites of the Kuril–Kamchatka island arc,” Geochem. Int. 39 (4), 336–346 (2001).

    Google Scholar 

  17. GERM, Partition Coefficient (Kd) Database. http:// earthref.org/KDD/

  18. J. Gill, Orogenic Andesites and Plate Tectonics (Springer, New York, 1981).

    Book  Google Scholar 

  19. E. N. Grib and V. L. Leonov, “Evolution of magmatic chambers of calderas of the Southern Secctors of the Karym volcanic center. Part 1. Geology, structure, and composition of pyroclastic flows,” Vulkanol. Seismol., No. 4, 21–40 (2004).

  20. E. N. Grib, V. L. Leonov, S. A. Rylova, T. M. Filosofova, A. N. Rogozin, and E. S. Klyapitskii, “Melt inclusions in quartz phenocrysts: the acid rocks of the Bannaya–Karymshina area, Kamchatka,” J. Volcanol. Seismol. 10 (2), 100–116 (2016).

    Article  Google Scholar 

  21. M. C. Humphreys, S. J. D. Blundy, and R. S. J. Sparks, “Shallow–level decompression crystallisation and deep magma supply at Shiveluch Volcano,” Contrib. Mineral. Petrol. 155, 45–61 (2008).

    Article  Google Scholar 

  22. D. A. Ionov, A. Benard, and P. Y. Plechov, “Melt evolution in subarc mantle: evidence from heating experiments on spinel–hosted melt inclusions in peridotite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia),” Contrib. Mineral. Petrol. 162, 1159–1174 (2011).

    Article  Google Scholar 

  23. S. Ishimaru and S. Arai, “Highly silicic glasses in peridotite xenolitths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub–arc mantle,” Lithos 107, 93–106 (2009).

    Article  Google Scholar 

  24. S. Ishimaru, S. Arai, Y. Ishida, M. Shirasaka, and V. M. Okrugin, “Melting and multi–stage metasomatism in the mantle wedge beneath a Frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka,” J. Petrol. 48 (2), 395–433 (2007).

    Article  Google Scholar 

  25. P. E. Izbekov, J. C. Eichelberger, and B. V. Ivanov, “The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir,” J. Petrol. 45 (11), 2326–2345 (2004).

    Article  Google Scholar 

  26. V. S. Kamenetsky, M. V. Portnyagin, A. V. Sobolev, and L. V. Danyushevsky, “Conditions of crystallization and composition of a melt of picrite—basaltic sequence of the Tumrok Range (Eastern Kamchatka), Geokhimiya, No. 8, 1133–1148 (1992).

    Google Scholar 

  27. V. S. Kamenetsky, A. V. Sobolev, A. V. Joron, and M. P. Semet, “Petrology and geochemistry of Cretaceous ultramafic volcanics from Eastern Kamchatka,” J. Petrol. 36(3), 637–66 (1995) 2.

  28. V. S. Kamenetsky, M. Zelenski, A. Gurenko, M. Portnyagin, K. Ehrig, M. Kamenetsky, T. Churikova, and S. Feig, “Silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Pert II. Composition, liquidus assemblage and fractionation of the silicate melt,” Chem. Geol. 471, 92–110 (2017).

    Article  Google Scholar 

  29. T. M. Kayzar, B. K. Nelson, O.·Bachmann, A. M.·Bauer,·and P. E. Izbekov, “Deciphering petrogenic processes using Pb isotope ratios from time–series samples at Bezymianny and Klyuchevskoy volcanoes, Central Kamchatka Depression,” Contrib. Mineral. Petrol. 168, 1067 (2014).

    Article  Google Scholar 

  30. L. N. Khetchikov, V. A. Pakhomova, A. A. Chashchin, and E. G. Odarichenko, “Composition of silicate glasses of melt inclusions in the minerals and groundmass of rocks of Gorelyi Volcano, Southern Kamchatka,” Tr. VNIISIMS, 322–336 (2000).

  31. L. N. Khetchikov, V. A. Pakhomova, V. K. Popov, A. A. Chashchin, and V. I. Sapin, “Composition of melt inclusions in minerals and temperature mode of the formation of rocks of the Dikii Greben, Kamchatka), Tikhookean. Geol. 19 (4), 3–11 (2000).

    Google Scholar 

  32. L. N. Khetchikov, A. A. Chashchin, V. A. Pakhomova, and E. G. Odarichenko, “Plagioclase phenocrysts in basalts of the Gorely and Mutnovsky volcanoes (southern Kamchatka) and conditions of their formation: melt inclusion data,” Proc. 10th Internnational Conference on Thermobarogeochemistry, Aleksandrov, Russia,2001 (VNIISIMS, Aleksandrov, 2001), pp. 111–140 [in Russian].

  33. S. A. Khubunaya and A. V. Sobolev, “Primary melts of calc-alkaline magnesian basalts from the Klyuchevskoi Volcano, Kamchatka,” Dokl. Earth Sci. 360 (4), 537–539 (1998).

    Google Scholar 

  34. S. A. Khubunaya, L. I. Gontovaya, A. V. Sobolev, and I. V. Nizkous, “Magma chambers beneath the Klyuchevskoy volcanic group (Kamchatka),” J. Volcanol. Seismol. 1 (2), 98–118 (2007).

    Article  Google Scholar 

  35. M. Kobayashi, H. Sumino, K. Nagao, S. Ishimaru, S. Arai, M. Yoshikawa, T. Kawamoto, Y. Kumagai, T. Kobayashi, R. Burgess, and C. J. Ballentine, “Slab–derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge,” Earth Planet. Sci. Lett. 457, 106–116 (2017).

    Article  Google Scholar 

  36. A. V. Koloskov, M. Yu. Puzankov, and E. S. Purozhkova, “Ultramafic inclusions in island-arc basalts: on problem of composition and genesis of yhe "crust–mantle mixture” transitional layer in island-arc systems,“ Geodynamics and Volcanism of the Kurile—Kamchatka Island-Arc System (IVIiG DVO RAN, 2001), pp. 123–152.

  37. D. V. Kovalenko, V. B. Naumov, V. Yu. Prokofiev, O. A. Ageeva, O. A. Andreeva, E. V. Kovaltchuk, K. G. Erofeeva and N. Yu. Ugryumova, “Chemical composition of melts of the Early Eocene volcanic center at Cape Khairyuzova, Western Kamchatka: evidence from inclusions in minerals,” Petrology 25 (1), 66–86 (2017).

    Article  Google Scholar 

  38. N. F. Krasov and R. Klokyatti, Immiscible splitting of silicate melt and its possible petrogenetic role: melt inclusion data, Dokl. Akad. Nauk SSSR 248 (1), 201–204 (1979).

    Google Scholar 

  39. V. L. Leonov and E. N. Grib, Structural Positions and Voclanism of Quaternary Calders of Kamchatka (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  40. S. Matveev, M. Portnyagin, C. Ballhaus, R. Brooker, and C. A. Geiger, “FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas,” J. Petrol. 46 (3), 603–614 (2005).

    Article  Google Scholar 

  41. M. McCulloch and J. Gamble, “Geochemical and geodynamical constraints on subduction zone magmatism,” Earth Planet. Sci. Lett. 102 (3–4), 358–374 (1991).

    Article  Google Scholar 

  42. N. L. Mironov, M. V. Portnyagin, P. Yu. Pletchov, and S. A. Khubunaya, “Final stages of magma evolution in Klyuchevskoy Volcano, Kamchatka: evidence from melt inclusions in minerals of high-alumina basalts,” Petrology 9 (1), 46–63 (2001).

    Google Scholar 

  43. N. L. Mironov, M. V. Portnyagin, “H2O and CO2 in parental magmas of volcano Klyuchevskoi (inferred from study of melt and fluid inclusions in olivine),” Russ. Geol. Geophys. 52 (11), 1353–1367 (2011).

    Article  Google Scholar 

  44. N. Mironov, M. Portnyagin, R. Botcharnikov, A. Gurenko, K. Hoernle, and F. Holtz, “Quantification of the CO2 budget and H2O–CO2 systematics in subduction–zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure,” Earth Planet. Sci. Lett. 425, 1–11 (2015).

    Article  Google Scholar 

  45. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–987 (2004).

    Google Scholar 

  46. V. B. Naumov, M. L. Tolstykh, E. N. Grib, V. L. Leonov, and N. N. Kononkova, “Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic center, Kamchatka, and Golovnina Volcano, Kunashir Island: evidence from inclusions in minerals,” Petrology 16 (1), 1–18 (2008).

    Article  Google Scholar 

  47. V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks. Geochem. Int. 48 (12), 1185–1207 (2010).

    Article  Google Scholar 

  48. V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Mean concentrations of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts,” Geochem. Int. 55 (7), 629–653 (2017).

    Article  Google Scholar 

  49. O. K. Neill, J. E. Hammer, P. E. Izbekov, M. G. Belousova, A. B. Belousov, A. B. Clarke, and B. Voight, “Influence of pre–eruptive degassing and crystallization on the juvenile products of laterally directed volcanic explosions,” J. Volcanol. Geotherm. Res. 198, 264–274 (2010).

    Article  Google Scholar 

  50. N. Nekrylov, M. V. Portnyagin, V. S. Kamenetsky, N. L. Mironov, T. G. Churikova, P. Yu. Plechov, A. Abersteiner, N. V. Gorbach, B. N. Gordeychik, S. P. Krasheninnikov, D. P. Tobelko, M. Yu. Shur, S. A. Tetroeva, A. O. Volynets, K. Hoernle, and G. Wörner, “Chromium spinel in Late Quaternary volcanic rocks from Kamchatka: implications for spatial compositional variability of subarc mantle and its oxidation state,” Lithos 322, 212–224 (2018).

    Article  Google Scholar 

  51. J. A. Pearce and I. J. Parkinson, “Trace element models for mantle melting; application to volcanic arc petrogenesis,” Ed. by H. M. Prichard, T. Alabaster, N. B. W. Harris, and C. R. Neary, Magmatic Processes and Plate Tectonics, (London, 1993), pp. 373–403.

    Book  Google Scholar 

  52. A. B. Perepelov, A. A. Chashchin, and Yu. A. Martynov, “Magmatic rocks of transform continental margins: Sredinno—Kamchatka Zone (Pliocene—Holocene),” Geodynamics, Magmatism, and Metallogeny of East Russia, (Dal’nauka,Vladivostok, 2005), pp. 382–398 [in Russian].

    Google Scholar 

  53. P. Yu. Plechov, N. L. Mironov, A. A. Plechova, and S. A. Khubunaya, “Compositional peculiarities and genesis of melt inclusions in plagioclase from the Apakhonchich lava flow, Klyuchevskoi Volcano, Kamchatka,” Geochem. Int. 38 (1), 34–41 (2000).

    Google Scholar 

  54. P. Yu. Plechov, T. A. Shishkina, V. A. Ermakov, and M. V. Portnyagin, “Formation conditions of allivalites, olivine–anorthite crystal enclaves, in the volcanics of the Kuril–Kamchatka arc,” Petrology 16 (3), 232–260 (2008).

    Article  Google Scholar 

  55. P. Yu. Plechov, A. L. Balashova, and O. V. Dirksen, “Magma degassing during 7600 14C Kurile Lake caldera-forming eruption and its climatic impact,” Dokl. Earth Sci. 433 (1), 974–977 (2010).

    Article  Google Scholar 

  56. P. Plechov, J. Blundy, N. Nekrylov, E. Melekhova, V. Shcherbakov, and M. S. Tikhonova, “Petrology and volatile content of magmas erupted from Tolbachik volcano, Kamchatka, 2012–13,” J. Volcanol. Geotherm. Res. 307, 182–199 (2015).

    Article  Google Scholar 

  57. A. A. Plechova, M. V. Portnyagin, and L. I. Bazanova, “The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky volcano,” Geochem. Int. 49(8), 743–767 (2011).

    Article  Google Scholar 

  58. V. V. Ponomareva, T. G. Churikova, I. V. Melekestsev, O. A. Braitseva, M. M. Pevzner, and L. D. Sulerzhitsky, Late Pleistocene–Holocene volcanism of Kamchatka, in Environmental and Climatic Changes: Natural and Related Anthropogenic Catastrophes (IGEM, Moscow, 2008), pp. 19–40 [in Russian].

  59. V. Ponomareva, M. Portnyagin, A. Derkachev, F. Pendea, J. Bourgeois, P. J. Reimer, D. Garbe–Schonberg, S. Krasheninnikov, and D. Nurnberg, “Early Holocene M ~ 6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and paleoenvironmental records,” Int. J. Earth Sci. 102, 1673–1699 (2013).

    Article  Google Scholar 

  60. V. Ponomareva, M. Portnyagin, M. Pevzner, M. Blaauw, P. Kyle, and A. Derkachev “Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass,” Int. J. Earth Sci. 104, 1459–1482 (2015).

    Article  Google Scholar 

  61. V. Ponomareva, N. Bubenshchikova, M. Portnyagin, E. Zelenin, A. Derkachev, S. Gorbarenko, D. Garbe–Schonberg, and I. Bindeman, “Large–magnitude Pauzhetka caldera–forming eruption in Kamchatka: Astrochronologic age, composition and tephra dispersal,” J. Volcanol. Geotherm. Res. 366, 1–12 (2018).

    Article  Google Scholar 

  62. M. V. Portnyagin, P. Yu. Plechov, and A. B. Osipenko, “Influence of natural decrepitation on the composition of experimentally homogenized melt inclusions in olivine as exemplified bt melanocratic basalts of Avacha Volcano, Kamchatka,” Vestn. OGGGGN RAN, No. 5, 62–64 (2000).

    Google Scholar 

  63. M. V. Portnyagin, D. P. Savel’ev, and K. Hoernle, “Plume-related association of Cretaceous oceanic basalts of Eastern Kamchatka: compositions of spinel and parental magmas,” Petrology 13 (6), 571–588 (2005).

    Google Scholar 

  64. M. Portnyagin, K. Hoernle, G. Avdeiko, F. Hauff, R. Werner, I. Bindeman, V. Uspensky, and D. Garbe–Schönberg, “Transition from arc to oceanic magmatism at the Kamchatka–Aleutian junction,” Geology 33, 25–28 (2005).

    Article  Google Scholar 

  65. M. V. Portnyagin, N. L. Mironov, S. V. Matveev, and P. Yu. Plechov, “Petrology of avachites, high-magnesian basalts of Avachinsky Volcano, Kamchatka: II. Melt inclusions in olivine,” Petrology 13 (4), 322–351 (2005).

    Google Scholar 

  66. M. Portnyagin, K. Hoernle, P. Plechov, N. Mironov, and S. Khubunaya, “Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc,” Earth Planet. Sci. Lett. 255, 53–69 (2007).

    Article  Google Scholar 

  67. M. Portnyagin, D. Savelyev, K. Hoernle, F. Hauff, and D. Garbe-Schonberg, “Mid–Cretaceous Hawaiian tholeiites preserved in Kamchatka,” Geology 36 (11), 903–906 (2008).

    Article  Google Scholar 

  68. M. V. Portnyagin, V. B. Naumov, N. L. Mironov, I. A. Belousov, and N. N. Kononkova, “Composition and evolution of the melts erupted in 1996 at Karymskoe lake, Eastern Kamchatka: Evidence from inclusions in minerals,” Geochem. Int. 49 (11), 1085–1110 (2011).

    Article  Google Scholar 

  69. M. V. Portnyagin, N. L. Mironov and D. P. Nazarova, “Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka,” Petrology 25 (4), 419–432 (2017).

    Article  Google Scholar 

  70. K. Robertson, A. Simon, T. Pettke, E. Smith, O. Selyangin, A. Kiryukhin, S. R. Mulcahy, and J. D. Walker, “Melt inclusion evidence for magma evolution at Mutnovsky volcano,” Geofluids 13 (4), 421–439 (2013).

    Article  Google Scholar 

  71. N. I. Seliverstov, Geodynamics of the Junction Zone between the Kurile—Kamchatka and Aleutial Island Arcs (Inst. Vulkanol. Seismol., Petrovalovsk-Kamchatskii, 2009) [in Russian].

    Google Scholar 

  72. V. D. Shcherbakov, P. Yu. Plechov, P. E. Izbekov, and J. S. Shipman, “Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka,” Contrib. Mineral. Petrol. 162, 83–99 (2011).

    Article  Google Scholar 

  73. T. A. Shishkina, P. Yu. Plechov, and M. V. Portnyagin, “Conditions of formation of the olivine–plagioclasecumulates of Ksudach Volcano, Kamchatka,” Izv. Vyssh. Ucheb. Zaved. Geol, Razvedka, No. 1, 8–17 (2009).

    Google Scholar 

  74. T. A. Shishkina, M. V. Portnyagin, R. E. Botcharnikov, R. R. Almeev, A. V. Simonyan, D. Gebre–Schonberg, S. Schuth, M. Oeser, and F. Holtz, “Experimental calibration and implications of olivine–melt vanadium oxybarometry for hydrous basaltic arc magmas,” Am. Mineral. 103 (3), 369–383 (2018).

    Article  Google Scholar 

  75. A. V. Sobolev and M. Chaussidon, “H2O concentrations in primary melts from supra–subduction zones and mid–ocean ridges: Implications for H2O storage and recycling in the mantle,” Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  76. A. V. Sobolev, V. S. Kamenetsky, and N. N. Kononkova, “New petrological and geochemical data on the ultramafic volcanic rocks of the Valagin Range, Eastern Kamchatka,” Geokhimiya, No. 12, 1694–1709 (1989).

    Google Scholar 

  77. G. M. Steblov, N. F. Vasilenko, A. S. Prytkov, D. I. Frolov, and T. A. Grekova, “Dynamics of the Kuril-Kamchatka subduction zone from GPS data,” Izv., Phys. Solid Earth 46 (5), 440–445 (2010).

    Article  Google Scholar 

  78. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins,” Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Special Publ. 42, 313–345 (1989).

  79. T. Yu. Timina, S. V. Kovyazin, and A. A. Tomilenko, The composition of melt and fluid inclusions in spinel of peridotite xenoliths from Avacha Volcano (Kamchatka), Dokl. Earth Sci. 442 (1), 115–119 (2012).

    Article  Google Scholar 

  80. S. A. Tetroeva and P. Yu. Plechov, “Petrology of the rocks of the Kambal Volcano: melt inclusion data,” Tr, VNIISIMS, 313–321 (2000).

  81. M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, S. A. Khubunaya, and N. N. Kononkova, “The Melt Composition and Crystallizational Conditions of Andesites from the Shiveluch Volcano in Kamchatka: Evidence from Mineral-hosted Inclusions,” Dokl. Eaarth Sci. 359A (3), 440–443 (1998).

    Google Scholar 

  82. M. L. Tolstykh, V. B. Naumov, G. E. Bogoyavlenskaya, and N. N. Kononkova, “The role of andesitic–dacitic–rhyolitic melts in the crystallization of phenocrysts in andesite of Bezymyannyi Volcano, Kamchatka,” Geochem. Int. 37 (1), 11–20 (1999).

    Google Scholar 

  83. M. L. Tolstykh, V. B. Naumov, and N. N. Kononkova, “Composition of magmas which formed dacite of Dikii Greben’ volcano (Southern Kamchatka): evidence from the study of melt inclusions,” Geochem. Int. 38 (10), 1020–1025 (2000).

    Google Scholar 

  84. M. L. Tolstykh, V. B. Naumov, A. D. Babansky, S. A. Khubunaya, and N. N. Kononkova, “Chemical composition, trace elements, and volatile components of melt inclusions in minerals from andesites of the Shiveluch volcano, Kamchatka,” Geochem. Int. 38 (suppl. 1), 122–132 (2000).

    Google Scholar 

  85. M. L. Tolstykh, V. B. Naumov, A. Yu. Ozerov, and N. N. Kononkova, “Composition of magmas of the 1996 eruption at the Karymskii volcanic center, Kamchatka: evidence from malt inclusions,” Geochem. Int. 39 (5), 447–458 (2001).

    Google Scholar 

  86. M. L. Tolstykh, A. D. Babansky, V. B. Naumov, L. I. Bazanova, and N. N. Kononkova, “Chemical composition, trace elements, and volatile components of melt inclusions in minerals from andesites of the Avachinskii volcano, Kamchatka,” Geochem. Int. 40 (11), 1112–1129 (2002).

    Google Scholar 

  87. M. L. Tolstykh, V. B. Naumov, M. G. Gavrilenko, A. Yu. Ozerov, and N. N. Kononkova, “Chemical composition, volatile components, and trace elements in the melts of the Gorely volcanic center, Southern Kamchatka: Evidence from inclusions in minerals,” Geochem. Int. 50 (6), 522–550 (2012).

    Article  Google Scholar 

  88. M. L. Tolstykh, M. M. Pevzner, V. B. Naumov, A. D. Babanskii, and N. N. Kononkova, “Types of parental melts of pyroclastic rocks of various structural–age complexes of the Shiveluch volcanic massif, Kamchatka: evidence from inclusions in minerals,” Petrology 23 (5), 480–560 (2015).

    Article  Google Scholar 

  89. M. L. Tolstykh, M. M. Pevzner, V. B. Naumov, and A. D. Babansky, “Characteristics of acid melts that produced the tephra of Pleistocene–Holocene eruptions of Ichinsky volcano, Kamchatka: evidence from melt inclusions,” Geochem. Int. 57 (3), 243–265 (2019).

    Article  Google Scholar 

  90. B. M. Urann, V. Le Roux, K. Hammond, H. R. Marschall, C.-T. A. Lee, and B. D. Monteleone, “Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle,” Contrib. Mineral. Petrol. 172, 51 (2017).

    Article  Google Scholar 

  91. G. Van den Bleeken and K. T. Koga, “Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F–Cl cycling through subduction zones,” Geochim. Cosmochim. Acta 171, 353–373 (2015).

    Article  Google Scholar 

  92. M. A. Vavilov, T. Yu. Bazarova, and I. K. Kuznetsov, “Pecularities of crystallization of basaltic andesite melt of the Khairyuzov massif, Western Kamchatka,” Geol. Geofiz., No. 7, 137–142 (1984).

  93. O. N. Volynets, “Geochemical types, petrology, and genesis of late Cenozoic volcanic rocks from the Kurile–Kamchatka island arc system,” Int. Geol. Rev. 36, 373–405 (1994).

    Article  Google Scholar 

  94. A. Volynets, T. Churikova, G. Woerner, B. Gordeychik, and P. Layer, “Mafic Late Miocene–Quaternary volcanic rocks in the Kamchatka back arc region: implications for subduction geometry and slab history at the Pacific–Aleutian junction,” Contrib. Mineral. Petrol. 159 (5), 659–687 (2010).

    Article  Google Scholar 

  95. B. F. Watson and K. Fujita “Tectonic evolution of Kamchatka and the sea of Okhotsk and implications for the Pacific Basin,” Tectonostratigraphic Terranes of the Circum-Pacific Region, Ed. by D. G. Howell (Houston, 1985), pp. 333–348.

    Google Scholar 

  96. G. M. Yogodsinski, J. M. Lees, T. G. Churikova, F. Dorendorf, G. Worner, and O. N. Volynets, “Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges,” Nature 409, 500–504 (2001).

    Article  Google Scholar 

  97. S. K. Zlobin. V. S. Kamenetsky, A. V. Sobolev, and N. N. Kononkova, “Initial composition of rocks of the parallel dikes of the ophiolites of the Mainitskaya zone, Koryakia: evidence from melt inclusions in Cr-spinels,” Geokhimiya, No. 11, 1595–1604 (1990).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.M. Pevzner for consultations provided when the paper was written. M.V. Portnyagin is thanked for constructive criticism, which was taken into account when the manuscript was finalized by the authors.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-05-00224.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. B. Naumov or A. V. Girnis.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A., Tolstykh, M.L. et al. Composition and Geochemical Specifics of Magmatic Melts in Kamchatka: Evidence from Melt Inclusions and Quenched Glasses of Rocks. Geochem. Int. 58, 271–290 (2020). https://doi.org/10.1134/S001670292003009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292003009X

Keywords:

Navigation