Skip to main content
Log in

Experimental Study of the Stability and Synthesis of the Tourmaline Supergroup Minerals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—Tourmaline is one of the widest spread minerals in nature and one of the most popular gems and a promising piezoelectric material. The growth of large crystals is today a topical task. Tourmaline monocrystals are difficult to synthesize owing to its complex chemical composition, the high chemical stability in hydrothermal solutions, and the low growth rate. The paper reviews recent data on the tourmaline synthesis and the results obtained at the Institute of Experimental Mineralogy, Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. A. Baksheev, V. Yu. Prokof’ev, V. O. Yapaskurt, M. F. Vigasina, L. D. Zorina, and V. N. Solov’ev, “Ferric-iron-rich tourmaline from the Darasun gold deposit, Transbaikalia, Russia,” Can. Mineral. 49 (1), 263–276 (2011).

    Article  Google Scholar 

  2. E. Berryman, B. Wunder, and D. Rhede, “Synthesis of K‑dominant tourmaline,” Am. Mineral. 99, 539–542 (2014).

    Article  Google Scholar 

  3. E. Berryman, B. Wunder, A. Ertl, M. Koch-Müller, D. Rhede, K. Scheidl, G. Giester, and W. Heinrich, “Influence of X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy,” Phys. Chem. Mineral. 43, 83–102 (2016).

    Article  Google Scholar 

  4. N. S. Bortnikov, N. V. Gorelikova, P. G. Korostelev, and V. G. Gonevchuk, “Rare earth elements in tourmaline and chlorite from tin-bearing assemblages: factors controlling fractionation of REE in hydrothermal systems,” Geol. Ore Deposits 50 (6), 445–461 (2008).

    Article  Google Scholar 

  5. B. L. Dutrow and D. J. Henry, “Tourmaline: a geologic DVD,” Elements 7 (5), 301–306 (2011).

    Article  Google Scholar 

  6. V. Ekambaram, “Synthesis and characterization of Na–Al tourmaline,” Indian Mineral. 26, 1–5 (1985).

    Google Scholar 

  7. E. N. Emel’yanova and T. A. Zigareva, “Tourmaline growth under hydrothermal conditions,” Kristallografiya 5, 955–957 (1960).

    Google Scholar 

  8. A. Ertl, G. Giester, T. Ludwig, H.-P. Meyer, and G. R. Rossman, “Synthetic B-rich olenite: correlations of single-crystal structural data,” Am. Mineral. 97, 1591–1597 (2012).

    Article  Google Scholar 

  9. A. Ertl, D. J. Henry, and E. Tillmanns, “Tetrahedral substitutions in tourmaline: a review,” Eur. J. Mineral. 30 (3), 465–470 (2018).

    Article  Google Scholar 

  10. C. Frondel and R. L. Collette, “Synthesis of tourmaline by reaction of mineral grains with NaCl–H3BO3 solution, and its implications in rock metamorphism,” Am. Mineral. 42, 754-758 (1957).

    Google Scholar 

  11. C. Frondel, C. S. Hurlbut, and R. C. Collette, “Synthesis of tourmaline,” Am. Mineral. 32 (11), 680–683 (1947).

    Google Scholar 

  12. Y. Fuchs, M. Lagache, and J. Linares, “Fe-tourmaline synthesis under different T and fO 2 conditions,” Am. Mineral. 83, 525–534 (1998).

    Article  Google Scholar 

  13. D. J. Henry and B. L. Dutrow, “Tourmaline studies through time: contributions to scientific advancements,” J. Geosci. 63, 77–98 (2018).

    Article  Google Scholar 

  14. D. J. Henry, M. Novak, F. C. Hawthorne, A. Ertl, B. Dutrow, P. Uher, and F. Pezzotta, “Nomenclature of the tourmaline supergroup minerals,” Am. Mineral. 96, 895–913 (2011).

    Article  Google Scholar 

  15. S. Y. Jiang, M. R. Palmer, J. F. Slack, and D. R. Shaw, “Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia,” Econ. Geol. 93 (1), 47–67 (1998).

    Article  Google Scholar 

  16. V. Kahlenberg and B. Velickov, “Structural investigations on a synthetic alkali-free hydrogen-deficient Fe-tourmaline (foitite),” Eur. J. Mineral. 12, 947–953 (2000).

    Article  Google Scholar 

  17. S. V. Kargal’tsev, “Study of the growth of synthetic tourmaline crystals,” Physicochemical Studies of Sulfide and Silicate Systems (IGiG SO AN SSSR, Novosibirsk, 1984), pp. 73–79 [in Russian].

  18. A. M. Kuz’min, “Mass crystallization,” Izv. Tomsk. Politekhn. Inst. 95, 378–383 (1958).

    Google Scholar 

  19. M. Kutzschbach, B. Wunder, M. Krstulovic, A. Ertl, R. Trumbull, A. Rocholl, and G. Giester, “First high-pressure synthesis of rossmanitic tourmaline and evidence for incorporation of Li at the X site,” Chem. Mineral. 44, 353–363 (2017).

    Article  Google Scholar 

  20. T. A. Larichev, L. V. Sotnikova, B. A. Sechkarev, Yu. A. Breslav, and A. N. Utekhin, Mass Crystallizaition in Inorganic Systems (Kemer. Gos. Univ., Muzbassvuzizdat, Kemerovo, 2006) [in Russian].

  21. A. S. Lebedev, S. V. Kargal’tsev, and V. S. Pavlyuchenko, “Synthesis and properties of tourmaline of the Al–Mg–(Na) and Al–Fe–(Na),” Materials on Genetic and Experimental Mineralogy. Growth and Properties of Crystals (Nauka, Novosibirsk, 1988), pp. 58–75 [in Russian].

    Google Scholar 

  22. D. T. Leonard, M. H. Yu, C. H. Kim, Y. C. Lee, D. H. Lee, D. W. Kim, and C. S. Kim, “Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline,” Appl. Therm. Eng. 31, 2025–2031 (2011).

    Article  Google Scholar 

  23. D. London, “Experimental synthesis of tourmaline: a historical overview,” Can. Mineral. 49, 117–136 (2011).

    Article  Google Scholar 

  24. D. London, A. Ertl, J. M. Hughes, G. B. Morgan VI, E. A. Fritz, and B. S. Harms, “Synthetic Ag-rich tourmaline: Structure and chemistry,” Am. Mineral. 91, 680–684 (2006).

    Article  Google Scholar 

  25. G. Lynch, “Hydrothermal alteration and tourmaline-albite equilibria at the coxheath porphyry Cu–Mo–Au deposit Nova Scotia,” Can. Mineral. 35, 79–94 (1997).

    Google Scholar 

  26. B. Marler, M. Borowski, U. Wodara, and W. Schreyer, “Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site,” Eur. J. Mineral. 14 (4), 763–771 (2002).

    Article  Google Scholar 

  27. P. McArdle, M. Fitzell, M. G. Oosterom, P. J. O’Conner, and P. S. Kennan, “Tourmaline as a potential host rock for gold in the Caledonides of southeast Ireland,” Mineral. Deposita 24, 154–159 (1989).

    Article  Google Scholar 

  28. M. C. Michel-Levy, “Artificial reproduction of minerals and comparison of their occurrence in metamorphic rocks,” Bull. Soc. Min. 76, 237 (1953).

    Google Scholar 

  29. G. V. Morgan and D. London, “Experimental reaction of amphibolite with boron-bearing aqueous fluid at 200 MPa: implication for tourmaline stability and partial melting in mafic rocks,” Contrib. Mineral. Petrol. 102 (3), 281–297 (1989).

    Article  Google Scholar 

  30. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovskii, A Reference Book on Thermodynamic Values (for Geologists) (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  31. C. R. Robbins and Yoder, H. S., Jr. “Stability relations of dravite, a tourmaline,” Carnegie Institute Washingron, Yearbook, 61, (1962).

  32. P. E. Rosenberg, F. F. Foit, and V. Ekambaram, “Synthesis and characterization of tourmaline in the system Na2O–Al2O3–SiO2–B2O3–H2O,” Am. Mineral. 71, 971–976 (1986).

    Google Scholar 

  33. I. V. Rozhdestvenskaya, Yu. M. Bronzova, O. V. Frank-Kamenetskaya, A. A. Zolotarev, L. G. Kuznetsova, and I. I. Bannova, “Refinement of the crystal structure of calcium–lithium–aluminum tourmaline from the pegmatite vein in the Sangilen Upland (Tuva Republic),” Crystal. Rept. 53 (2), 223–227 (2008).

    Article  Google Scholar 

  34. I. V. Rozhdestvenskaya, T. V. Setkova, O. S. Vereshchagin, A. G. Shtukenberg, and Yu. B. Shapovalov, “Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines,” Crystal. Rept. 57 (1), 57–63 (2012).

    Article  Google Scholar 

  35. W. Schreyer, J. M. Hughes, H.-J. Bernhardt, A. Kalt, S. Prowatke, and A. Ertl, “Reexamination of olenite from the type locality: detection of boron in tetrahedral coordination,” Eur. J. Mineral. 14, 935–942 (2002).

    Article  Google Scholar 

  36. T. V. Setkova, Yu. B. Shapovalov, A. A. Marakushev, and V. S. Balitsky, “Experimental study of stability and crystallization peculiarities of tourmaline in hydrothermal conditions,” Dokl. Earth Sci. 425A (3), 490–493 (2009a).

    Article  Google Scholar 

  37. T. V. Setkova, Yu. B. Shapovalov, and V. S. Balitsky, “Experimental growth and structural–morphological characteristics of Co-tourmaline,” Dokl. Earth Sci. 424 (1), 82–85 (2009b).

    Article  Google Scholar 

  38. T. V. Setkova, T. Yu. Shapovalov, and V. Balitsky “Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions,” J. Cryst. Growth 318, 904–907 (2011).

    Article  Google Scholar 

  39. T. V. Setkova, V. S. Balitsky, O. S. Vereschagin, and Yu. B. Shapovalov, “Hydrothermal synthesis and morphology of Ga-bearing tourmaline,” Dokl. Earth Sci. 473 (2), 419–422 (2017).

    Article  Google Scholar 

  40. F. G. Smith, “Transport and deposition of the non-sulfide vein minerals. IV. Tourmaline,” Econ. Geol. 44, 186–192 (1948).

    Article  Google Scholar 

  41. M. N. Taran, A. S. Lebedev, and A. N. Platonov, “Optical absorption of synthetic tourmalines,” Phys. Chem. Minerals 20 (3), 209–220 (1993).

    Article  Google Scholar 

  42. A. M. Taylor and B. C. Terrell, “Synthetic tourmalines containing elements of the first transition series,” J. Cryst. Growth 1, 238–244 (1967).

    Article  Google Scholar 

  43. B. E. Taylor and J. F. Slack, “Tourmalines from Appalachian–Caledonian massive sulfide deposits: textural, chemical and isotopic relationships,” Econ. Geol. 79, 1703–1726 (1984).

    Article  Google Scholar 

  44. T. Tomisaka, “Syntheses of some end-member of the tourmaline group,” Mineral. J. 5 (5), 355–364 (1968).

    Article  Google Scholar 

  45. O. S. Vereshchagin, O. V. Frank-Kamenetskaya, and I. V. Rozhdestvenskaya, “Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions, Mineral. Mag. 79 (4), 997–1006 (2015).

    Article  Google Scholar 

  46. O. S. Vereshchagin, O. V. Frank-Kamenetskaya, I. V. Rozhdestvenskaya, and A. A. Zolotarev, “Incorporation of 3d elements in tourmalines: structural adjustments and stability,” Eur. J. Mineral. 30, 917–928 (2018).

    Article  Google Scholar 

  47. G. von Goerne and G. Franz, “Synthesis of Ca-tourmaline in the system CaO–MgO–Al2O3–SiO2–B2O3–H2O–HCl,” Mineral. Petrol. 69, 161–182 (2000).

    Article  Google Scholar 

  48. G. von Goerne, G. Franz, and R. Wirth, “Hydrothermal synthesis of large dravite crystals by the chamber method,” Eur. J. Mineral. 11, 1061–1077 (1999).

    Article  Google Scholar 

  49. G. von Goerne, G. Franz, and W. Heinrich, “Synthesis of tourmaline solid solutions in the system Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl and distribution of Na between tourmaline and fluid at 300 to 700°C and 200MPa,” Contrib Mineral Petrol. 144, 160–173 (2001).

    Article  Google Scholar 

  50. A. Vorbach, “Experimental examination on the stability of synthetic tourmalines in temperatures from 250°C to 750°C and pressures to 4 kb,” Neues Jahrb. Mineral. 161, 69–83 (1989).

    Google Scholar 

  51. I. E. Voskresenskaya, “Phase formation in experiments of tourmaline synthesis,” Mineral. Sb. 30 (1), 14–17 (1976).

    Google Scholar 

  52. I. E. Voskresenskaya and M. A. Barsukova, “Synthsis and properties of some Fe and Fe-free tourmalines,” Hydrothermal Synthesis of Minerals (Nauka, Moscow, 1968), pp. 175–192 (1968) [in Russian].

    Google Scholar 

  53. I. E. Voskresenskaya and L. A. Shterenberg, “Synthesis of tourmaline in chloride media,” Kristallografiya 19 (4), 888–890 (1973).

    Google Scholar 

  54. I. E. Voskresenskaya, and T. N. Ivanova, “Study of synthesized tourmalines,” Tr. Mineral. Muz. Im. A.E. Fersmana 24, 20–30 (1975).

    Google Scholar 

  55. W. Wagner and A. Pruss, “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,” J. Phys. Chem. Ref. Data 31 (2), 387–535 (2002).

    Article  Google Scholar 

  56. C. P. Wang, B. L. Wang, and J. T. Liu, “Adsorption of Cd(II) from acidic aqueous solutions by tourmaline as a novel material,” Chin. Sci. Bull. 57, 3218–3225 (2012).

    Article  Google Scholar 

  57. Ch. Wang, P. Wang, Y. Li, and Y. Zhao, “Laboratory investigation of dynamic rheological properties of tourmaline modified bitumen,” Constr. Build. Mater. 80, 195–199 (2015).

    Article  Google Scholar 

  58. U. Wodara and W. Schreyer, “X-site vacant Al-tourmaline: a new synthetic end-member,” Eur. J. Mineral. 13, 521–532 (2001).

    Article  Google Scholar 

  59. B. Wunder, E. Berryman, B. Plessen, D. Rhede, M. Koch-Müller, and W. Heinrich, “Synthetic and natural ammonium-bearing tourmaline,” Am. Mineral. 100, 250–256 (2015).

    Article  Google Scholar 

  60. F. Yavuz, A. Iskenderoǧlu, and S. Y. Jiang “Tourmaline compositions from the Salikvan porphyry Cu–Mo deposit and vicinity, northeastern Turkey,” Can. Mineral. 37 (4), 1007–1023 (1999).

    Google Scholar 

  61. V. E. Zagorsky, “Sosedka pegmatite body at the Malkhan Deposit of gem tourmaline, Transbaikalia: composition, inner structure, and petrogenesis,” Petrology 23 (1), 68–92 (2015).

    Article  Google Scholar 

  62. V. Y. Zagorsky, I. S. Peretyazhko, and A. S. Dmitrieva, “Axinite-(Mn) from miarolitic granitic pegmatites of the Malkhan gem-tourmaline deposit (Transbaikalia, Russia): composition, paragenesis and condition of formation,” Eur. J. Mineral. 28 (4), 811–824 (2016).

    Article  Google Scholar 

  63. G. P. Zaraisky, Zoning and Conditions of Formation of Metasomatic Rocks (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.V. Balitskaya, T.M. Bublikova, V.T. Kadiev, A.A. Mar’in, A.N. Nekrasov, A.A. Viryus, O.L. Samokhvalova, G.V. Bondarenko, D.A. Varlamov, A.F. Red’kin, G.P. Zaraisky, A.R. Kotelnikov (Insitute of Experimental Mineralogy, Russian Academy of Sciences) for help in our study and O.S. Vereshchagin, I.V. Rozhdestvenskaya, and O.V. Frank-Kamenetskata (St. Petersburg University) for cooperation. V.S. Zagorsky and V. E. Kushnarev are thanked for tourmaline samples given for the experiments.

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 06-05-64900-а, 09-05-00769-а, 12-05-31030 mol-а, 14-05-31369 mol_а) and Federal Purposeful Program “Scientific and Scientific–Pedagogic Staffs of the Innovation Russia” for 2009–2013 (Event 1.3.1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. V. Setkova, V. S. Balitsky or Yu. B. Shapovalov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setkova, T.V., Balitsky, V.S. & Shapovalov, Y.B. Experimental Study of the Stability and Synthesis of the Tourmaline Supergroup Minerals. Geochem. Int. 57, 1082–1094 (2019). https://doi.org/10.1134/S0016702919100094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702919100094

Keywords:

Navigation