Skip to main content
Log in

Mineralogical and geochemical patterns of mantle xenoliths from the Jixia region (Fujian Province, southeastern China)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper discusses the results of mineralogical and petrographic studies of spinel lherzolite xenoliths and clinopyroxene megacrysts in basalt from the Jixia region related to the central zone of Cenozoic basaltic magmatism of southeastern China. Spinel lherzolite is predominantly composed of olivine (Fo89.6–90.4), orthopyroxene (Mg# = 90.6–92.7), clinopyroxene (Mg# = 90.3–91.9), and chrome spinel (Cr# = 6.59–14.0). According to the geochemical characteristics, basalt of the Jixia region is similar to OIB with asthenospheric material as a source. The following equilibrium temperatures and pressures were obtained for spinel peridotite: 890–1269°C and 10.4–14.8 kbar. Mg# of olivine and Cr# of chrome spinel are close to the values in rocks of the enriched mantle. It is evident from analysis of the textural peculiarities of spinel lherzolite that basaltic melt interacted with mantle rocks at the xenolith capture stage. Based on an analysis of the P–T conditions of the formation of spinel peridotite and clinopyroxene megacrysts, we show that mantle xenoliths were captured in the course of basaltic magma intrusion at a significantly lower depth than the area of partial melting. However, capture of mantle xenoliths was preceded by low-degree partial melting at an earlier stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Bertrand and J. C. C. Mercier, “The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system?” Earth Planet. Sci. Lett. 76, 109–122 (1985).

    Article  Google Scholar 

  • G. P. Brey and T. Koehler, “Geothermobarometry in fourphase Lherzolites II: New thermo- barometers and practical assessment of existing thermobarmetres,” J. Petrol. 31, 1353–1387 (1990).

    Article  Google Scholar 

  • R. L. Cao and S. H. Zhu, “Correlation of mantle xenolith occurrences with earth’s internal zoning and tectonic in eastern China,” Chinese J. Geophys. 26, 158–167 (1983) (in Chinese with English abstract).

    Google Scholar 

  • L. Em. and Zhao, D. S. “Cenozoic basalt and xenoliths from depth in eastern China,” (Science Press, Beijing, 1987), pp. 349–475 (in Chinese).

    Google Scholar 

  • S. Gao, R. L. Rudnick, R. W. Carlson, W. F. McDonough, and Y. S. Liu, “Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton,” Earth Planet. Sci. Lett. 198, 307–322 (2002).

    Article  Google Scholar 

  • W. L. Griffin, A. Zhang, S. Y. O’Reilly, et al. “Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton,” in Mantle Dynamics and Plate Interactions in East Asia, Ed. by M.F.J. Flowe, S.L. Chung, C.H. Lo, and T.Y. Lee, Am. Geophys. Union, Geodynam. Ser. 27, 107–126 (1988).

    Article  Google Scholar 

  • E. Hellebrand, J. E. Snow, H. J. Dick, and A. W. Hofmann, “Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites,” Nature 410, 677–681 (2001).

    Article  Google Scholar 

  • C. Herzberg, “Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phases relations involving pyroxenes in the system CaO–MgO–Al2O3–SiO2,” Geochim Cosmochim Acta 42, 945–958 (1978).

    Article  Google Scholar 

  • K. S. Ho, J. C. Chen, C. H. Lo, and H. L. Zhao “40Ar–39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang–Fujian region, SE China: eruption ages, magma evolution and petrogenesis,” Chem. Geol. 197, 287–318 (2003).

    Article  Google Scholar 

  • X. X. Huang and Y. G. Xu, “Thermal state and structure of the lithosphere beneath eastern China: a synthesis on basalt-borne xenoliths,” J. Earth Sci. 21, 711–730 (2010).

    Article  Google Scholar 

  • D. A. Ionov, L. S. Doucet, and I. V. Ashchepkov, “Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite,” J. Petrol. 51 (11), 2177–2210 (2010).

    Article  Google Scholar 

  • A. J. Irving and F. A. Frey, “Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis,” Geochim. Cosmochim. Acta 48, 1201–1221 (1984).

    Article  Google Scholar 

  • T. Koehler and G. P. Brey, “Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications,” Geochim. Cosmochim. Acta 54, 2375–2388 (1990).

    Article  Google Scholar 

  • M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  • C. Y. Lin, L. B. Shi, X. D. Chen, and X. L. Han, “Thermal structure and rheology of the upper mantle beneath Mingxi, Fujian Province,” Geol. Rev. 45, 352–360 (1999) (in Chinese with English abstract).

    Google Scholar 

  • J. M. Liotard, D. Briot, and P. Boivin, “Petrological and geochemical relationships between pyroxene megacrysts and associated alkali-basalts from Massif Central (France),” Contrib. Mineral. Petrol. 98, 81–90 (1988).

    Article  Google Scholar 

  • J-C. C. Mercier “Single-pyroxene thermobarometry,” Tectonophysics 70, 1–37 (1980).

    Article  Google Scholar 

  • H. S. C. O’Neill, “The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer,” Contrib. Mineral. Petrol. 77, 185–194 (1981).

    Article  Google Scholar 

  • S. Y. O’Reilly and W. L. Griffin, “4-D lithosphere mapping: methodology and examples,” Tectonophysics 262, 3–18 (1996).

    Article  Google Scholar 

  • H. N. Pollack and D. S. Chapman, “On the regional variation of heat flow, geotherms, and lithospheric thickness,” Tectonophysics 38, 279–296 (1977).

    Article  Google Scholar 

  • M. Seyler and E. Bonatti, “Na, AI TM and Al VI in clinopyroxenes of subcontinental and suboceanic ridge peridotites: a clue to different melting processes in the mantle,” Earth Planet. Sci. Lett. 122, 281–289 (1994).

    Article  Google Scholar 

  • Y. Song, J. Wang, J. L. Liu, Z. P. Xie, and K. H. Hattori, “Mineral chemistry of mantle xenoliths in Cenozoic basalts from Wangqing, eastern Jilin: Implications for formation of newly accreted sub-continental mantle,” Earth Sci. Front. 20, 75–86 (2013) (in Chinese with English abstract).

    Google Scholar 

  • F. Su, Y. Xiao, H. Y. He, B. X. Su, Y. W, and R. X. Zhu, “He and Ar isotope geochemistry of pyroxene megacrysts and mantle xenoliths in Cenozoic basalt from the Changle–Linqu area in western Shandong,” Chinese Sci Bull. 59, 396–411 (2014).

    Article  Google Scholar 

  • S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes,” in Magmatism in Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ., 42, 313–345 (1989).

    Google Scholar 

  • W. Sun, X. Ding, Y. H. Hu, and X. H. Li, “The golden transformation of the Cretaceous plate subduction in the west Pacific,” Earth Planet. Sci. Lett. 262, 533–542 (2007).

    Article  Google Scholar 

  • R. N. Thompson, “Some high-pressure pyroxenes,” Mineral. Mag. 39, 768–787 (1974).

    Article  Google Scholar 

  • P. Z. Wang, Y. A. Chen, B. T. Cao, J. D. Pan, and C. Y. Wang, “Crust–upper-mantle structure and deep structural setting of Fujian Province,” Geol. Fujian 12 (2), 79–158 (1993). (in Chinese with English abstract).

    Google Scholar 

  • U. Wiechert, D. A. Ionov, and K. H. Wedephol, “Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle,” Contrib. Mineral. Petrol. 126, 345–364 (1997).

    Article  Google Scholar 

  • J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

    Article  Google Scholar 

  • G. Witt-Eickschen and H. A. Seck, “Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer,” Contrib. Mineral. Petrol. 106, 431–439 (1991).

    Article  Google Scholar 

  • X. Xu, W. L. Griffin, S. Y. O’Reilly, N. J. Pearson, H. Y. Geng, and J. P. Zheng, “Re–Os isotopes of sulfides in mantle xenoliths from eastern China: progressive modification of lithospheric mantle,” Lithos 102, 43–64 (2008).

    Article  Google Scholar 

  • X. S. Xu, S. Y. O’Reilly, W. L. Griffin, and X. M. Zhou, “Enrichment of upper mantle peridotite: petrological, trace-element and isotopic evidence in xenoliths from SE China,” Chem. Geol. 198, 163–188 (2003).

    Article  Google Scholar 

  • X. S. Xu, S. Y. O’Reilly, W. L. Griffin, and X. M. Zhou, “Genesis of young lithospheric mantle in SE China,” J. Petrol. 41, 111–148 (2000).

    Article  Google Scholar 

  • Y. G. Xu, “Geothermometer applicable to mantle xenoliths,” Acta Petrol. Sin. 9, 167–179 (1993).

    Google Scholar 

  • Y. Yu, X. S. Xu, W. L. Griffin, S. Y. O’Reilly, and Q. K. Xia, “H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China,” Lithos 126, 182–197 (2011).

    Article  Google Scholar 

  • Y. S. Yuan, Y. S. Ma, S. B. Hu, D. L. Guo, and X. R. Fu, “Present-day geothermal characteristics in South China,” J. Geophys. 49 (4), 1118–1126 (2006) (in Chinese).

    Google Scholar 

  • J. Zheng, S. Y. O’Reilly, W. L. Griffin, F. X. Lu, M. Zhang, and N. J. Pearson, “Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution,” Lithos 57, 43–66 (2001).

    Article  Google Scholar 

  • J. P. Zheng, “Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton,” Chinese Sci. Bull. 54, 3397–3416 (2009).

    Google Scholar 

  • X. M. Zhou and W. X. Li, “Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas,” Tectonophysics 326, 269–287 (2000).

    Article  Google Scholar 

  • Q. Zhou, F. Y. Wu, Z. Y. Chu, Y. H. Yang, Y. D. Sun, and W. C. Ge, “Isotopic compositions of mantle xenoliths and age of the lithospheric mantle in Yitong, Jilin Province,” Acta Petrol. Sin. 26, 1241–1264 (2010). (in Chinese with English abstract)

    Google Scholar 

  • H. Zou, A. Zindler, X. S. Xu, and Q. Qi, “Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance,” Chem. Geol. 171, 33–47 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Zhang.

Additional information

Original Russian Text © G.S. Zhang, A.V. Bobrov, J.S. Long, W.H. Han, 2016, published in Geokhimiya, 2016, No. 10, pp. 931–943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.S., Bobrov, A.V., Long, J.S. et al. Mineralogical and geochemical patterns of mantle xenoliths from the Jixia region (Fujian Province, southeastern China). Geochem. Int. 54, 901–913 (2016). https://doi.org/10.1134/S0016702916100049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916100049

Keywords

Navigation