Skip to main content
Log in

Gas mixing with aqueous solution in the ore-forming hydrothermal process: an example of gold

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The mixing of gas and aqueous fluid in hydrothermal ore-forming processes is discussed with reference to gold deposits to demonstrate that this phenomenon may affect ore deposition. Data on fluid inclusions in samples from the Sukhoi Log and Olimpiadinskoe deposits in Russia are utilized to demonstrate possible implications of gas mixing with hydrothermal solution when gold ores are formed. A simplified thermodynamic model is suggested to show how interaction between aqueous saline solutions with pure carbon dioxide or carbon dioxide—methane mixture may affect gold solubility. Further studying such processes may provide interesting information for understanding the genesis of ore mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • V. V. Adushkin, S. N. Andreev, and S. I. Popel, “Formation of nano-and microspherules of minerals in ore deposits depending on depth of host rock occurrence,” Geol. Ore Deposits 48 (3), 237–243 (2006).

    Article  Google Scholar 

  • V. V. Adushkin, S. N. Andreev, and S. I. Popel, “Cavitation mechanism of formation of nano-and microsize particles of minerals in ore deposits,” Geol. Ore Deposits 46(5) 313–320 (2004).

    Google Scholar 

  • N. N. Akinfiev and A. V. Zotov, “Thermodynamic description of aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600C and pressures of 1–3000 bar,” Geochem. Int. 48 (7) 714–720 (2010).

    Article  Google Scholar 

  • N. N. Akinfiev and A. V. Zotov, “Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25–500°C and pressures of 1–2000 bar,” Geochem. Int. 39 (10): 990–1006 (2001).

    Google Scholar 

  • T. Baker, M. Bertelli, T. Blenkinsop, et al. “P–T–X conditions of fluids in the Sunrise Dam gold deposit, Western Australia, and implications for the interplay between deformation and fluids,” Econ. Geol. 105 (5), 873–894 (2010).

    Article  Google Scholar 

  • I. A. Baksheev, V. Yu. Prokof’ev, and V. I. Ustinov, “Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes,” Geochem. Int. 39 (S2), S129–S144 (2001).

    Google Scholar 

  • E. Bastrakov, Y. Shvarov, S. Girvan, et al. “FreeGs: webenabled thermodynamic database for modeling of geochemical processes,” in Dynamic Earth: Past, Present and Future: Abstracts of the 17th Australian Geol. Convention, Hobart, Australia, 2004 (Hobart, 2004), p. 52 (2004).

    Google Scholar 

  • O. K. Bazhenova, Yu. K. Burllin, B. A. Sokolov, and V. E. Khain, Petroleum Geology and Geochemistry (Mosk. Gos. Univ., Moscow, 2012) [in Russian].

    Google Scholar 

  • S. Bhattacharya and M. K. Panigrahi, “Heterogeneity in fluid characteristics in the Ramagiri–Penakacherla sector of the Eastern Dharwar Craton: implications to gold metallogeny,” Russ. Geol. Geophys. 52 (11), 1436–1447 (2011).

    Article  Google Scholar 

  • R. J. Bodnar, T. J. Reynolds, and C. A. Kuehn, “Fluidinclusion systematics in epithermal systems,” Rev. Econ. Geol. 2, 73–97 (1985).

    Google Scholar 

  • N. S. Bortnikov, “Geochemistry and origin of the oreforming fluids in hydrothermal–magmatic systems in tectonically active zones,” Geol. Ore Deposits 48 (1) 1–23 (2006).

    Article  Google Scholar 

  • V. A. Buryak and N. M. Khmelevskaya, Sukhoi Log-One of the World’s Largest Gold Deposits (Dal’nauka, Vladivostok, 1997) [in Russian].

    Google Scholar 

  • Chemical Encyclopedia (Sovetskaya entsiklopediya, Moscow, 1988), Vol 1 [in Russian].

  • L. W. Diamond, “Introduction to gas-bearing, aqueous fluid inclusions,” in Fluid Inclusions: Analysis and Interpretation, Short Course Ser. 32 (Mineral. Ass. Can., Vancouver, 2003), pp. 101–158.

    Google Scholar 

  • V. V. Distler, M. A. Yudovskaya, G. L. Mitrofanov, et al. “Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia,” Ore Geol. Rev. 24 (1–2), 7–44 (2004).

    Article  Google Scholar 

  • F. M. Faleiros, G. A. C. Campanha, R. M. S. Bello, and K. Fuzikawa, “Fault–valve action and vein development during strike–slip faulting: an example from the Ribeira Shear Zone, Southeastern Brazil,” Tectonophysics 438 (1), 1–32 (2007).

    Article  Google Scholar 

  • Guidebook on Geochemistry (Nedra, Moscow, 1980) [in Russian].

  • C. A. Heinrich, “The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study,” Mineral. Dep. 39 (8), 864–889 (2005).

    Article  Google Scholar 

  • C. A. Heinrich, T. Driesner, A. Stefansson, and T. M. Seward, “Magmatic vapor contraction and the transport of gold from porphyry to epithermal ore deposits,” Geology 39, 761–764 (2004).

    Article  Google Scholar 

  • H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients and apparent molal and standard and relative molal properties to 600 C and 5 kb,” Am. J. Sci. 281, 1249–1516 (1981).

    Article  Google Scholar 

  • J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  • B. Kennedy, Y. Kharaka, W. Evans, et al. “Mantle fluids in the San Andreas fault system, California,” Science 278 (5341), 1278–1281 (1997).

    Article  Google Scholar 

  • E. L. Klein and K. Fuzikawa, “Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: implications for orogenic gold mineralization,” Ore Geol. Rev. 37 (1), 31–40 (2010).

    Article  Google Scholar 

  • S. G. Kryazhev, V. Yu. Prokof’ev, and Yu. V. Vasyuta, An application of ICP MS during analysis of rock-forming fluids, Vestn. Mosk. Gos. Univ., Ser. 4: Geol. 61 (4), 30–36 (2006).

    Google Scholar 

  • A. M. Kutepov, L. S. Sterman, and N. G. Styushina, Hydrodynamics and Heath Exchange during Vapor Formation (Vysshaya Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  • L. Z. Lakshtanov, A. A. Grafchikov, and V. M. Shmonov, “Dynamics of filtration of homogenous and heterogenous fluids in finely porous media at elevated parameters,” in Experimental Studies of Endogenous Processes (IEM, Chernogolovka, 2008), pp. 264–274.

    Google Scholar 

  • N. P. Laverov, V. Yu. Prokof’ev, V. V. Distler, et al., “New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold–platinum deposit,” Dokl. Earth Sci. 371 (2), 357–361 (2000).

    Google Scholar 

  • D. M. Lawrence, P. J. Treloar, A. H. Rankin, et al. “A fluid inclusion and stable isotope study at the Loulo Mining District, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits,” Econ. Geol. 108 (2), 229–257 (2013).

    Article  Google Scholar 

  • S. A. Miller, C. Collettini, L. Chiaraluce, et al. “Aftershocks driven by a high pressure CO2 source at depth,” Nature 427, 724–727 (2004).

    Article  Google Scholar 

  • Mining Encyclopedia (Sovetskaya Entsiklopediya, Moscow, 1984), vol. 1 (in Russian).

  • V. B. Naumov, “Possibilities of determination of pressure and density of the mineral-forming media from inclusions in minerals,” in Application of Data on Inclusions in Minerals in Searching for and Studying Ore Deposits, (Nedra, Moscow, 1982), pp. 85–94 [in Russian].

    Google Scholar 

  • V. B. Naumov, and V. I. Kovalenko, “Characteristics of major volatiles of natural magmas and metamorphic fluids: evidence from inclusions in minerals,” Geokhimiya 24 (5) 590–600 (1986).

    Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, and O. F. Mironova, “Principal physicochemical parameters of natural mineral-forming fluids,” Geochem. Int. 47 (8), 777–802 (2009).

    Article  Google Scholar 

  • B. I. Nigmatulin, V. I. Milashenko, and V. E. Nikolaev, “Experimental study of hydrodynamics of equilibrium dispersed–ring vapor–aqueous flows,” Teplofiz. Vys. Temp. 16 (6) 1263–1278 (1978).

    Google Scholar 

  • B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids (Mc-Graw Hill, New York, 2001).

    Google Scholar 

  • V. Yu. Prokof’ev, A. V. Volkov, N. A. Goryachev, and A. A. Sidorov, “New data on formation conditions and composition of ore-forming fluids in the Shkol’noe gold deposit, Northeastern Russia,” Dokl. Earth Sci. 401 (5), 460–464 (2005).

    Google Scholar 

  • V. Yu. Prokof’ev, Z. B. Afanas’eva, G. F. Ivanova, et al., “Study of fluid inclusions in the minerals of the Olimpiada Au–(Sb–W) deposit, Yenisei Range,” Geokhimiya 32 (7) 1012–1029 (1994).

    Google Scholar 

  • V. Prokofiev and S. Selector, “Barbotage in hydrothermal ore-forming processes,” in Proceedings of the 34th International Geological Congress, Brisbane, Australia, 2012 (Australian Geosciences Council, Brisbane, 2012), no. 3089.

    Google Scholar 

  • V. Yu. Prokofiev and S. L. Selector, “Fluid inclusion evidence for barbotage and its role in gold deposition at the Darasun goldfield (eastern Transbaykalia, Russia),” Centr. Eur. J. Geosci. 6 (2), 131–138 (2014).

    Google Scholar 

  • W. R. Rodwell, Research into Gas Generation and Migration in Radioactive Waste Repository Systems (PROGRESS Project). European Commission Report (AEA Technology pic: UK-Harwell, 2000).

    Google Scholar 

  • E. Roedder, Fluid Inclusions, Rev. Mineral 12, (1981).

  • A. I. Rusanov, S. A. Levichev, and V. T. Zharov, Surface Separation of Matters, Theory and Methods (Leningrad, 1981) [in Russian].

    Google Scholar 

  • E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic species in geologic fluids: correlation among standard molal thermodynamic properties of aqueous ions and hydroxide complexes,” Geochim. Cosmochim. Acta 61 (5), 907–950 (1997).

    Article  Google Scholar 

  • Yu. V. Shvarov, “HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows,” Geochem. Int. 46 (8), 834–839 (2008)

    Article  Google Scholar 

  • R. Stryjek and J. H. Vera, “PRSV2: a cubic equation of state for accurate vapor–liquid equilibria calculations,” Can. J. Chem. Eng. 64, 820–826 (1986).

    Article  Google Scholar 

  • D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb,” Geochim. Cosmochim. Acta 61, 1359–1412 (1997).

    Article  Google Scholar 

  • T. Ulrich, D. Günther, and C. A. Heinrich, “Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits,” Nature 399, 676–679 (1999).

    Article  Google Scholar 

  • A. V. Volkov, N. E. Savva, A. A. Sidorov, V. Yu. Prokof’ev, N. A. Goryachev, S. D. Voznesensky, A. V. Al’shevsky, and A. D. Chernova, “Shkol’noe gold deposit, the Russian Northeast,” Geol. Ore Deposits 53 (1), 1–26 (2011).

    Article  Google Scholar 

  • D. K. Voznyak and V. I. Pavlilshin, “High-pressure flows of CO2-fluid and mineral formation by the example of the Ukrainian Shield,” in Proceedings of International Symposium Modern Methods of Study and Prospect of the Use of Inclusions of Mineral-Forming Environments in Science and Practice APIFIS-III, Tashkent, Russia, 2006 (Tashkent, 2006), pp. 101–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Additional information

Original Russian Text © V.Yu. Prokof’ev, N.N. Akinfiev, S.L. Selektor, 2016, published in Geokhimiya, 2016, No. 5, pp. 427–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’ev, V.Y., Akinfiev, N.N. & Selektor, S.L. Gas mixing with aqueous solution in the ore-forming hydrothermal process: an example of gold. Geochem. Int. 54, 403–414 (2016). https://doi.org/10.1134/S0016702916050086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916050086

Keywords

Navigation