Skip to main content
Log in

A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The uplift of the Tibetan Plateau has caused the development of many high-enthalpy geothermal fields that are rich in exploitable rare and dispersed resource elements. However, the mechanism of the unusual enrichment of these resource elements is still unclear. From a geochemical viewpoint, including major chemical compositions, some rare and dispersed resource elements and trace elements in geothermal water and some river samples from the northern Lhasa block (saline lake area), the southern Lhasa block (Gangdise volcanic belt) and Tethyan Himalaya in Tibet, this study provides new insights into the mechanism of the hydrochemical evolution of the Tibetan geothermal system. The Cl-type geothermal waters in the Gangdise volcanic belt and Tethyan sedimentary area show similar chemical characteristics that are apparently different from that of surface cold waters. The concentrations of Sb, Tl, As, K, Cs, Li, Rb, Ga, B, Cl, Th, Sc, Mn, V, and Ti in Cl-type geothermal waters are at least one order of magnitude higher than those in surface cold waters, but the concentrations of Ca, Mg, Ni, Cr, Zn, Fe, Co, Cu, Pb, and U in Cl-type geothermal waters are slightly higher or even lower than those in surface cold waters. Some rivers and streams in Tibet also show high concentrations of toxic elements. These rivers and streams are mainly polluted by geothermal spring discharge and are unsuitable for drinking. Some ions and elements (such as Ca, Mg, Ba, Sr, SO 2−4 and Mn) in HCO 3 —type geothermal waters from sedimentary rocks are affected by the availability of soluble minerals such as calcite, dolomite and gypsum. However, the other dissolved elements in HCO 3 –type geothermal waters show the characteristic of mixing Cl-type geothermal waters with surface cold waters. The origin of deep fluids in Cl and HCO 3 —type springs is related, and this origin probably involves the contribution of crustal partial melting rather than single rock leaching. Thus, deep circulating groundwater mixes with residual magmatic fluids and evolves into the unusual enrichment of geothermal mineral resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Tong, Z. Liao and S. Liu, Thermal Springs in Tibet (Science Press, Beijing, 2000) (in Chinese).

    Google Scholar 

  2. J. Duo, “The basic characteristics of the Yangbajing geothermal field–a typical high temperature geothermal system,” Eng. Sci., 5, 42–47 (2003) (in Chinese).

    Google Scholar 

  3. Q. Guo, Y. Wang and W. Liu, “Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China,” J. Volcanol. Geotherm. Res. 166, 255–268 (2007).

    Article  Google Scholar 

  4. T. Yokoyama, S. I. Nakai and H. Wakita, “Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau,” J. Volcanol. Geotherm. Res. 88, 99–107 (1999).

    Article  Google Scholar 

  5. E. H. Hearn, B. M. Kennedy and A. H. Truesdell, “Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park,” Geochim. Cosmochim. Acta 54, 3103–3113 (1990).

    Article  Google Scholar 

  6. K. An, X. Zhang, and S. He, “Geochemical characteristics of Yangbajing geothermal field,” Hydrogeology and Engineering Geology, 1, 14–18 (1980) (in Chinese).

    Google Scholar 

  7. K. Wei, R. Lin and Z. Wang, “Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China,” Geochimica 4, 338–345 (1983) (in Chinese).

    Google Scholar 

  8. P. Zhao, J. Jin, H. Z. Zhang et al., “Chemical composition of thermal water in the Yangbajing geothermal field, Tibet,” Sci. Geol. Sinica 33, 61–72 (1998a) (in Chinese).

  9. P. Zhao, J. Duo, Y. L. Liang, et al., “Characteristics of gas geochemistry in Yangbajing geothermal field, Tibet,” Chinese Sci. Bull. 43, 1770–1777 (1998b) (in Chinese).

  10. W. Q. Ji, F. Y. Wu, S. L. Chung, et al., “Zircon U–Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet,” Chem. Geol. 262, 229–245 (2009).

    Article  Google Scholar 

  11. D. C. Zhu, Z. D. Zhao, Y. L. Niu, et al., “The origin and pre–Cenozoic evolution of the Tibetan Plateau,” Gondwana Res. 23, 1429–1454 (2013).

    Article  Google Scholar 

  12. A. Yin and T. M. Harrison, “Geologic evolution of the Himalayan–Tibetan orogen,” Annu. Rev. Earth. Pl. Sc. 28, 211–280 (2000).

    Article  Google Scholar 

  13. G. T. Pan, J. Ding, D. S. Yao and L. Q. Wang, Guidebook of 1: 1500000 Geologic Map of the Qinghai–Xizang (Tibet) Plateau and Adjacent Areas (Cartographic Publishing House, Chengdu, 2004) (in Chinese).

    Google Scholar 

  14. D. C. Zhu, Z. D. Zhao, Y. L. Niu, et al., “The Lhasa Terrane: record of a microcontinent and its histories of drift and growth,” Earth Planet. Sc. Lett. 301, 241–255 (2011).

    Article  Google Scholar 

  15. G. M. Yu and C. S. Wang, Sedimentary Geology of the Xizang (Tibet) Tethys (Geological Publishing House, Beijing, 1990) (in Chinese).

    Google Scholar 

  16. G. Liu and G. Einsele, “Sedimentary history of the Tethyan basin in the Tibetan Himalayas,” Geol. Rundsch. 83, 32–61 (1994).

    Article  Google Scholar 

  17. X. H. Li, C. S. Wang and X. M. Hu, “Stratigraphy of deep–water Cretaceous deposits in Gyangze, southern Tibet, China,” Cretaceous Res. 26, 33–41 (2005).

    Article  Google Scholar 

  18. X. Zhang and Y. Wang, “Seismic and GPS evidence for the kinematics and the state of stress of active structures in south and south–central Tibetan Plateau,” J. Asian Earth. Sci. 29, 283–295 (2007).

    Article  Google Scholar 

  19. J. Zhao, X. Yuan, H. Liu, et al., “The boundary between the Indian and Asian tectonic plates below Tibet,” P. Natl. Acad. Sci. USA 107, 11229–11233 (2010).

    Article  Google Scholar 

  20. P. Tapponnier, J. L. Mercier, R. Armijo,et al., “Field evidence for active normal faulting in Tibet,” Nature 294, 410–414 (1981).

    Article  Google Scholar 

  21. M. K. Clark and L. H. Royden, “Topographic ooze: Building the eastern margin of Tibet by lower crustal flow,” Geology 28, 703–706 (2000).

    Article  Google Scholar 

  22. K. V. Hodges, R. R. Parrish and M. P. Searle, “Tectonic evolution of the central Annapurna range, Nepalese Himalayas,” Tectonics 15, 1264–1291 (1996).

    Article  Google Scholar 

  23. T. Harrison, F. J. Ryerson, P. Le Fort, et al., “A late Miocene–Pliocene origin for the central Himalayan inverted metamorphism,” Earth Planet. Sci. Lett. 146, E1–E7 (1997).

    Article  Google Scholar 

  24. P. Zhao, J. Duo, E. Xie and J. Jin, “Strontium isotope data for thermal waters in selected high-temperature geothermal fields, China,” Acta Petrol. Sin. 19, 569–576 (2003) (in Chinese).

    Google Scholar 

  25. W. F. Giggenbach, “Geothermal solute equilibria. derivation of Na–K–Mg–Ca geoindicators”. Geochim. Cosmochim. Acta 52, 2749–2765 (1988).

    Article  Google Scholar 

  26. D. London, “Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral–melt equilibria,” J. Petrol. 38, 1691–1706 (1997).

    Article  Google Scholar 

  27. B. C. Schmidt, “Effect of boron on the water speciation in (alumino) silicate melts and glasses,” Geochim. Cosmochim. Acta 68, 5013–5025 (2004).

    Article  Google Scholar 

  28. V. Duchi, A. Minissale and M. Manganelli, “Chemical composition of natural deep and shallow hydrothermal fluids in the Larderello geothermal field,” J. Volcanol. Geotherm. Res. 49, 313–328 (1992).

    Article  Google Scholar 

  29. G. Cortecci, T. Boschetti, M. Mussi, et al., “New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile,” Geochem. J. 39, 547–571 (2005).

    Article  Google Scholar 

  30. E. C. Angcoy, “Geochemical Modelling of the High–Temperature Mahanagdong Geothermal Field, Leyte, Philippines,” Master’s thesis, Faculty of Science, University of Iceland, pp. 126 (2010).

    Google Scholar 

  31. B. Capaccioni, O. Vaselli, F. Tassi, et al., “Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy),” J. Hydrol. 396, 292–301 (2011).

    Article  Google Scholar 

  32. B. J. Purnomo and T. Pichler, “Geothermal systems on the island of Java, Indonesia,” J. Volcanol. Geotherm. Res. 285, 47–59 (2014).

    Article  Google Scholar 

  33. Q. X. Wang, D. W. Zhang, Q. Li, et al., “Preliminary research of Cs extraction from Yangbajing geothermal water, Tibet, China,” Hydrometallurgy China 4, 18–21 (1993) (in Chinese).

    Google Scholar 

  34. X. Y. Zheng, “The distribution characteristics of B and Li in the brine of Zhacangcaka (Zhangzang Caka) saline lake, Xizang Autonomous Region, China,” Oceanologia Et Limnologia Sinica, 13, 26–34 (1982) (in Chinese).

    Google Scholar 

  35. M. P. Zheng, J. Xiang, X. J. Wei and Y. Zheng, Saline Lakes on the Qinghai–Xizang (Tibet) Plateau (Beijing Science and Technology Publishing Co. Ltd., Beijing, 1989) (in Chinese).

    Google Scholar 

  36. S. Wold, K. Esbensen and P. Geladi, “Principal component analysis,” Chemometr. Intell. Lab. 2, 37–52 (1987).

    Article  Google Scholar 

  37. I. M. Farnham, K. H. Johannesson, A. K. Singh, et al., “Factor analytical approaches for evaluating groundwater trace element chemistry data”. Anal. Chim. Acta, 490, 123–138 (2003).

    Article  Google Scholar 

  38. K. J. Stetzenbach, I. M. Farnham, V. F. Hodge and K. H. Johannesson, “Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer,” Hydrol. Process. 13, 2655–2673 (1999).

    Article  Google Scholar 

  39. I. M. Farnham, K. J. Stetzenbach, A. K. Singh and K. H. Johannesson, “Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system,” Math. Geol. 32, 943–968 (2000).

    Article  Google Scholar 

  40. W. E. Seyfried, D. R. Janecky and M. J. Mottl, “Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron,” Geochim. Cosmochim. Acta 48, 557–569 (1984).

    Article  Google Scholar 

  41. J. D. Skalbeck, L. Shevenell and M. C. Widmer, “Mixing of thermal and non–thermal waters in the Steamboat Hills area, Nevada, USA,” Geothermics 31, 69–90 (2002).

    Article  Google Scholar 

  42. M. Scambelluri, O. Mntener, L. Ottolini, et al., “The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids,” Earth Planet. Sc. Lett. 222, 217–234 (2004).

    Article  Google Scholar 

  43. M. Sakuyama and I. Kushiro, “Vesiculation of hydrous andesitic melt and transport of alkalies by separated vapor phase,” Contrib. Mineral. Petrol. 71, 61–66 (1979).

    Article  Google Scholar 

  44. A. E. Williams and C. A. Heinrich, “100th Anniversary special paper: vapor transport of metals and the formation of magmatic–hydrothermal ore deposits,” Econ. Geol. 100, 1287–1312 (2005).

    Article  Google Scholar 

  45. Y. Y. Zhao, X. T. Zhao and Z. B. Ma, “Study on chronology for hot spring typed Cs-deposit of Targjia, Tibet,” Acta Petrol. Sin. 22, 717–724 (2006).

    Google Scholar 

  46. Z. Q. Hou, Z. Q. Li, X. M. Qu,et al., “The uplifting processes of the Tibetan Plateau since 0.5 Ma evidence from hydrothermal activity in the gangdise Belt,” Sci. China Ser. D 31, 27–33 (2001) (in Chinese).

    Google Scholar 

  47. M. P. Zheng, W. G. Liu, J. Xiang and Z. T. Jiang, “On saline lakes in Tibet, China,” Acta Geol. Sin–Engl. 2, 184–194 (1983) (in Chinese).

    Google Scholar 

  48. X. X. Mo, Z. D. Zhao, X. H. Yu, et al., Cenozoic Collisional–Postcollisional Igneous Rocks in the Tibetan Plateau (Geological Publishing House, Beijing, 2009) (in Chinese).

    Google Scholar 

  49. W. H. Kang, D. L. Li and J. Q. Bai, “Geothermal geology of the Yangbajing geothermal field in Xijang (Tibet),” Bull. Inst. Geomech. Cags 6, 17–78 (1985) (in Chinese).

    Google Scholar 

  50. Z. Liu, W. J. Lin, E. J. Xie, et al., “Characteristics and indicative significance of deuterium excess in thermal water in Nimu–Naqu area of Tibet, China,” Journal of Chengdu University of Technology (Science & Technology Edition) 41, 251–256 (2014) (in Chinese).

    Google Scholar 

  51. H. B. Tan, Y. F. Zhang, W. J. Zhang,et al., “Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes,” Appl. Geochem. 51, 23–32 (2014).

    Article  Google Scholar 

  52. L. Hoke, S. Lamb, D. R. Hilton and R. J. Poreda, “Southern limit of mantle–derived geothermal helium emissions in Tibet: implications for lithospheric structure,” Earth Planet. Sc. Lett. 180, 297–308 (2000).

    Article  Google Scholar 

  53. N. Harris, M. Ayres and J. Massey, “Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas,” J. Geophys. Res-Sol. Earth 100, 15767–15777 (1995).

    Article  Google Scholar 

  54. D. Visona, R. Carosi, C. Montomoli, et al., “Miocene andalusite leucogranite in central–east Himalaya (Everest–Masang Kang area): Low-pressure melting during heating,” Lithos 144, 194–208 (2012).

    Article  Google Scholar 

  55. D. Visona and B. Lombardo, “Two–mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating?,” Lithos 62, 125–150 (2002).

    Article  Google Scholar 

  56. L. E. Gao, L. C. Zeng and K. J. Xie, “Early Oligocene Na-rich peraluminous leucogranite in the Yardoi gneiss dome, southern Tibet: Formation mechanism and tectonic implications,” Acta Petrol. Sin. 25, 2289–2302 (2009).

    Google Scholar 

  57. C. M. Huang, Z. D. Zhao, D. C. Zhu, et al., “Geochemistry, zircon U-Pb chronology and Hf isotope of Luozha leucogranite, southern Tibet: Implication for petrogenesis,” Acta Petrol. Sin. 29, 3689–3702 (2013).

    Google Scholar 

  58. B. Q. Zhu, L. X. Zhu and C. Y. Shi, Geochemical Exploration of Geothermal Fields (Geological Press, Beijing, 1992) (in Chinese).

    Google Scholar 

  59. Z. Li and Z. Hou, Partial Melting in the Upper Crust in Southern Tibet: Evidence from Active Geothermal Fluid System (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  60. K. D. Nelson, W. Zhao, L. D. Brown et al., “Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results,” Science 274, 1684–1688 (1996).

    Article  Google Scholar 

  61. A. Hirn, M. Sapin, C. Lepine, et al., “Increase in melt fraction along a south–north traverse below the Tibetan Plateau: evidence from seismology,” Tectonophysics 273, 17–30 (1997).

    Article  Google Scholar 

  62. D. Alsdorf and D. Nelson, “Tibetan satellite magnetic low: evidence for widespread melt in the Tibetan crust?,” Geology 27, 943–946 (1999).

    Article  Google Scholar 

  63. R. Kind, X. Yuan, J. Saul, et al., “Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction,” Science 298, 1219–1221 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.F., Tan, H.B., Zhang, W.J. et al. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system. Geochem. Int. 53, 1090–1106 (2015). https://doi.org/10.1134/S0016702915120125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915120125

Keywords

Navigation