Skip to main content

Advertisement

Log in

Hydrogeochemical and isotope geochemical study of northwestern Algerian thermal waters

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Northwestern Algeria is characterized by a large number of thermal waters and volcanic eruptions and belongs to the Alpine-Magrebide belt. The geothermal reservoirs that feed these reservoirs are mainly hosted by a fractured Jurassic limestone and dolomite sequence. Seven samples were collected from thermal springs of near-neutral pH (6.2 to 7.56) with discharge temperatures between 42.9 and 66.1 °C. Hydrogeochemical analyses of the thermal waters reveal four types (Na+-Ca2+-Cl, Na+-Ca2+-Cl-HCO3 , Na+-Ca2+-Cl-SO4 2−, and Na+-HCO3 -Cl) and show high total dissolved solids up to 4002 mg/L. Stable isotopic results (δ18 O and δ D) indicate that the thermal waters are of meteoric origin deeply infiltrated and heated by advective heat anomalies and raised up to the surface through deep-seated faults acting as hydrothermal conduits. The estimated reservoir temperatures using silica geothermometers and fluid-mineral equilibria overlap between 66 and 125 °C, while Na/K and K/Mg geothermometers give much higher and lower results, respectively, and are mainly influenced by mixing with cooler Mg groundwaters as indicated by the Na-K-Mg plot in the immature water field and in silica and chloride mixing models. Thermal waters deeply circulated and heated at a depth of 2 km were supplied by the higher geothermal gradients, which can reach 42.8 °C km−1 due to the complex geological setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aïfa T, Feinberg H, Derder ME, Merabet NE (2003) Contraintes magnétostratigraphiques concernant la durée de l’interruption des communications marines en Méditerranée occidentale pendant le Messinien supérieur. Geodiversitas 25:617–631

    Google Scholar 

  • Aksoy N, Simsek S, Gunduz O (2009) Groundwater contamination mechanism in a geothermal field: a case study of Balçova Turkey. J Contam Hydrol 103:13–28

    Article  Google Scholar 

  • Auboin J, Durand-Delga M (1971) Aire méditerranéenne. Encyclopidia Universalis 10:743–745

    Google Scholar 

  • Bahri F, Saibi H, Cherchali ME (2010) Characterization, classification, and determination of drinkability of some Algerian thermal waters. Arabian J Geosciences 4:207–219

    Article  Google Scholar 

  • Barkaoui AE, Zarhloule Y, Rimi A, Verdoya M, Bouri S (2014) Hydrogeochemical investigations of thermal waters in the northeastern part of Morocco. Environ Earth Sci 71:1767–1780

    Article  Google Scholar 

  • Belabbes S, Meghraoui M, Cakir Z, Bouhadad Y (2008) InSAR analysis of a blind thrust rupture and related active folding: the 1999 Ain Temouchent earthquake (Mw 5.7, Algeria) case study. J Seismol 13:421–432

    Article  Google Scholar 

  • Bouchareb-Haouchine FZ (2012) Etude Hydrochimique des Sources Thermales de l’Algérie du Nord- Potentialités Géothermiques. These Doctorat en Sciences, USTHB, Algiers, p 135

    Google Scholar 

  • Chalouan A, Michard A, El Kadiri K, Negro F, Frizon de Lamotte D, Saddiqi O (2008) The Rif belt. In: Michard A, Chalouan A, Saddiqi O, Frizon de Lamotte D (eds) Continental evolution: the geology of Morocco. Springer, Berlin, pp 203–302

    Chapter  Google Scholar 

  • Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A et al (2000) The transition from the calc-alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110

    Article  Google Scholar 

  • Craig H (1963) The isotopic geochemistry of water and carbon in geothermal area. In: Tongiori, E. (ed), Nuclear geology in geothermal areas, Spoleto. Consiglio Nazional delle Riecerche, Laboratorio di Geologia Nucleare, Pias, 17–53

  • Craig H, Boato G, White DE (1956) Isotopic geochemistry of thermal waters. National Acad. Sci. National Research Council Publication 400:29–38

  • Davisson ML, Criss RE (1996) Na-Ca-Cl relations in basinal fluids. Geochim Cosmochimica Acta 60:2743–2752

    Article  Google Scholar 

  • Domzig A, Yelles A-K, Le Roy C, Déverchère J, Bouillin J-P, Bracene R et al (2006) Searching for the Africa–Eurasia Miocène boundary offshore western Algeria (MARADJA’03 cruise). C R Geosci 338:80–91

    Article  Google Scholar 

  • El-Fiky AA (2009) Hydrogeochemistry and geothermometry of thermal groundwater from the Gulf of Suez Region, Egypt. JKAU: Earth Science 20:71–96

    Google Scholar 

  • Fekraoui A (2007) Caractéristiques géochimiques des eaux géothermales de la région d’Oran. Revue des Energies Renouvelables CER’07 Oujda 75 – 80.

  • Fenet B (1975) Recherche sur l’Alpinisation de la Bordure Septentrionale du Bouclier Africain à Partir de l’Etude d’un Elément de l’Orogenèse Nord Maghrébine, Les Monts du Djebel Tessala et les Massifs du Littoral Oranais’, Thèse de Doctorat d’Etat

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for Na/K geothermometer. Geoth Res Council Trans 3:221–224

    Google Scholar 

  • Fournier RO (1992) Water geothermometers applied to geothermal energy. D’Amore, F. (Coordinator), Application of Geochemistry in Geothermal Reservoir Development. UNITAR/UNDP, Vial del Corso, Italy, pp. 37–69

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geoth. Res. Council Bull., November, 3-12

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta 37:1255–1275

    Article  Google Scholar 

  • Fournier RO, Truesdell AH (1974) Geochemical indicator of subsurface temperature—part2, estimation of temperature and fraction of hot water mixed with cold water. J Res US Geol Survey 2:263–270

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic composition of geothermal water and steam discharges. D’Amore F. (coordinator) Application of geochemistry in Geothermal Reservoir development.UNITAR/UNDP, Vial del Corso, Italy, 253-273.

  • Gokgoz A, Tarcan G (2006) Mineral equilibria and geothermometry of the Dalaman-Koycegiz thermal springs, southern turkey. Appl Geochem 21:253–268

    Article  Google Scholar 

  • Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  • Guo Q, Wang Y, Liu W (2009) Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. J Volcanol Geotherm Res 180:9–20

    Article  Google Scholar 

  • Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems Xinzhou basin. J Volcanol Geotherm Res 189:92–104

    Article  Google Scholar 

  • Issaadi A (1992) Le Thermalisme dans son Cadre Geostructural, Apport a la connaissance de la structure profonde de l’Algérie et de ses Ressources Géothermales. These Doctorat d’Etat., Univ.Sci.et Tech., Alger.

  • Joseph EP, Fournier N, Lindsay JM, Fischer TP (2011) Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc. J Volcanol Geotherm Res 206:1–14

    Article  Google Scholar 

  • Keenan JH, Keyes FG, Hill PG, Moore JG (1969) Steam tables. Wiley, New York, 162

    Google Scholar 

  • Louni-Hacini A, Bellon H, Maury RC (1995) Datation 40K-40Ar de la transition du volcanisme calco-alcalin au volcanisme alcalin en Oranie au Miocene superieur. Comptes Rendus Académie des Sciences, Paris 321:975–982

    Google Scholar 

  • Matlu H, Kilic A (2009) Geothermometry applications for the Balikesir thermal waters. Turkey Environ Geol 56:913–920

    Article  Google Scholar 

  • Mutlu H (1998) Chemical geothermometry and fluid-mineral equilibria for the Omer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geotherm Res 80:303–321

    Article  Google Scholar 

  • Nieva D, Nieva R (1987) Development in geothermal energy in Mexico, part 12—A cationic composition geothermometer for prospection of geothermal resources. Heat Recovery Syst CHp 7:243–258

    Article  Google Scholar 

  • Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the western Mediterranean and Europe, Pure Appl. Geophys 161:661–681

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey: Earth Science Information Center, Open-File Reports Section [distributor], Water-Resources Investigations Report 99-4259, 312.

  • Pasvanoğlu S (2013) Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey. Appl Geochem 38:70–81

    Article  Google Scholar 

  • Pasvanoğlu S, Chandrasekharam D (2011) Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevşehir (Kozakli) area, Central Turkey. J Volcanol Geotherm Res 202:241–250

    Article  Google Scholar 

  • Rimi A, Zarhloule Y, Barkaoui AE, Correi A, Carneiro J, Verdoya M et al (2012) Towards a de-carbonized energy system in north-eastern Morocco: prospective geothermal resource. Renew Sustain Energy Rev 16:2207–2216

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patters in modern global precipitation. In: Swart PK (ed) Climate change in continental isotopic records. American Geophysical Union Monogr. Ser. 78, Washington, DC, USA, pp 1–36

    Chapter  Google Scholar 

  • Saibi H (2009) Geothermal resources in Algeria. Renew Sust Energ Rev 13:2544–2552

    Article  Google Scholar 

  • Saibi H (2015) Geothermal resources in Algeria. Proceedings in World Geothermal Congress, Melbourne, Australia

    Google Scholar 

  • Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M et al (2007) Kinematics of the western Africa Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200

    Article  Google Scholar 

  • Shakeri A, Moore F, Kompani-Zare M (2008) Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. J Volcanol Geotherm Res 178:829–836

    Article  Google Scholar 

  • Tarcan G (2005) Mineral saturation and scaling tendencies of waters discharged from wells (>150 °C) in geothermal areas of Turkey. J Volcanol Geotherm Res 142:263–283

    Article  Google Scholar 

  • Thomas G (1985) Geodynamique d’un bassin intramontagneux; le bassin du bas Cheliff occidental (Algérie) durant le Mioplioquaternaire, Ph.D. Thesis, Universite’ de Pau et Pays de l’Adour, France.

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. Proc. Adv. Eur. Geoth. Res., Second Symposium, Strasbourg, pp 428–443

    Google Scholar 

  • Truesdell AH (1976) Summary of section III. Geochemical techniques in exploration. Proceeding 2nd UN symposium on the development and use of geothermal resources, San Francisco, 1975, 1, liii-lxxix.

  • Truesdell AH, Fournier RO (1977) Procedure for estimating the temperature of a hot water component in mixed water by using a plot of silica verses enthalpy. J Res US Geol Survey 5:49–52

    Google Scholar 

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water–vapor saturation curve. In: World Geothermal Congress, 28 May–19 June. Kyushu and Tohoku, Japan, pp 1927–1932

    Google Scholar 

  • White AF (1986) Chemical and Isotopic characteristics of fluids within the Baca Geothermal Reservoir, Valles Caldera, New Mexico. J Geophys Res 91:1855–1866

    Article  Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine. Structure, stratigraphie et évolution du Trias au Miocène. Rev. Geol. Dyn et geogr. Phys 24:201–297

    Google Scholar 

  • Yelles-Chaouche AK, Djellit H, Beldjoudi H, Bezzeghoud M, Buforn E (2004) The Ain Temouchent (Algeria) Earthquake of December 22nd, 1999. Pure Appl Geophys 161:607–621

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thankful acknowledgement for the Ministry of Education, Culture, Sports, Science and Technology (MEXT, Japan) Ph.D. scholarship support providing the first author during this study. We would also like to show our sincere gratitude and acknowledgement to the G-COE of Kyushu University for funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Belhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhai, M., Fujimitsu, Y., Bouchareb-Haouchine, F.Z. et al. Hydrogeochemical and isotope geochemical study of northwestern Algerian thermal waters. Arab J Geosci 9, 169 (2016). https://doi.org/10.1007/s12517-015-2252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-015-2252-2

Keywords

Navigation