Skip to main content
Log in

Experimental study of model granite melting in the presence of alkali carbonate solutions at 400 MPa

  • Short Communications
  • Published:
Geochemistry International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • L. Y. Aranovich and R. C. Newton, “H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite—periclase equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  • L. Y. Aranovich, R. C. Newton, and C. E. Manning, “Brine-assisted anatexis: experimental melting in the system haplogranite—H2O-NaCl-KCl at deep-crustal conditions,” Earth Planet. Sci. Lett. 374, 111–120 (2013).

    Article  Google Scholar 

  • L. Ya. Aranovich, Mineral Equilibria of Multicomponent Solid Solutions (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  • L. Ya. Aranovich, “Fluid—mineral equilibria and thermodynamic mixing properties of fluid systems,” Petrology 21 (6), 527–538 (2013).

    Article  Google Scholar 

  • R. A. Brooker and B. A. Kjarsgaard, “Silicate—carbonate liquid immiscibility and phase relations in the system SiO2-Na2O–Al2O3-CaO-CO2 at 0.1–2.5 GPa with applications to carbonatite genesis,” J. Petrol. 52 (7–8), 1281–1305 (2011).

    Article  Google Scholar 

  • S. T. Feig, J. Koepke, and J. E. Snow, “Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt,” Contrib. Mineral. Petrol. 160, 551–568 (2010).

    Article  Google Scholar 

  • M. S. Ghiorso and R. O. Sack, “Chemical mass transfer in magmatic processes IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Article  Google Scholar 

  • J. R. Goldsmith and D. M. Jenkins, “The hydrothermal melting of low and high albite,” Am. Mineral. 70, 924–933 (1985).

    Google Scholar 

  • T. J. B. Holland and R. Powell, “An internally-consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  • T. Holland and R. Powell, “Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset,” J. Petrol. 42 (4), 673–683 (2001).

    Article  Google Scholar 

  • B. A. Kjarsgaard and T. D. Peterson, “Nephelinite—carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence,” Mineral. Petrol. 43, 293–314 (1991).

    Article  Google Scholar 

  • L. N. Kogarko, C. M. B. Henderson, and H. Pacheco, “Primary Ca-rich carbonatite magma and carbonatesilicate-sulphide liquid immiscibility in the upper mantle,” Contrib. Mineral. Petrol. 121, 267–274 (1995).

    Article  Google Scholar 

  • L. N. Kogarko, G. Kurat, and T. Ntaflos, “Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil,” Contrib. Mineral. Petrol. 140, 577–587 (2001).

    Article  Google Scholar 

  • A. F. Koster van Groos, “High-pressure DTA study of the upper three-phase region in the system Na2CO3-H2O,” Am. Mineral. 75, 667–675 (1990).

    Google Scholar 

  • A. F. Koster van Groos and P. J. Wyllie, “Liquid immiscibility in the system Na2O–Al2O3–SiO2–CO2 at pressures up to 1 kilobar,” Am. J. Sci. 264, 234–255 (1966).

    Article  Google Scholar 

  • A. F. Koster van Groos and P. J. Wyllie, “Liquid immiscibility in the join NaAlSi3O8–Na2CO3–H2O and its bearing on the genesis of carbonatites,” Am. J. Sci. 266, 932–967 (1968).

    Article  Google Scholar 

  • A. F. Koster van Groos and P. J. Wyllie, “Liquid immiscibility in the join NaAlSi3O8–CaAl2Si2O8–Na2CO3–H2O,” Am. J. Sci. 273, 465–487 (1973).

    Article  Google Scholar 

  • W. C. Luth, “The influence of pressure on the composition of eutectic liquids in the binary systems sanidine-silica and albite-silica,” Carnegie Institute Washington Year Book. 66, 480–484 (1968).

    Google Scholar 

  • C. N. Mercer and A. D. Johnston, “Experimental studies of the PT–H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: constraints on lower-crustal mineral assemblages,” Contrib. Mineral. Petrol. 155, 571–592 (2008).

    Article  Google Scholar 

  • D. A. Mustart, “Phase relations in the peralkaline portion of the system Na2O–Al2O3–SiO2–H2O,” Dissertation, Stanford University, USA (1972).

    Google Scholar 

  • K. I. Shmulovich and C. M. Graham, “Melting of albite and dehydration of brucite in H2O–NaCl fluids to 9 kbars and 700–900 degrees C: implications for partial melting and water activities during high pressure metamorphism,” Contrib. Mineral. Petrol. 124 (3–4), 370–382 (1996).

    Article  Google Scholar 

  • M.-L. C. Sirbescu and P. I. Nabelek, “Crustal melts below 400°C, Geology. 31, 685–688 (2003).

    Article  Google Scholar 

  • I. P. Solovova and A. V. Girnis, “Silicate—carbonate liquid immiscibility and crystallization of carbonate and K-rich basaltic magma: insights from melt and fluid inclusions,” Mineral. Mag. 76 (2), 411–439 (2012).

    Article  Google Scholar 

  • R. Thomas, P. Davidson, and H. Beurlen, “The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research,” Mineral. Petrol. 106, 55–73 (2012).

    Article  Google Scholar 

  • R. Thomas, P. Davidson, and C. Schmidt, “Extreme alkali bicarbonateand carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark,” Contrib. Mineral. Petrol. 161, 315–329 (2011).

    Article  Google Scholar 

  • P. J. Wyllie and O. F. Tuttle, “The system CaO–CO2–H2O and the origin of carbonatites,” J. Petrol. 1, 1–46 (1960).

    Article  Google Scholar 

  • J. Yaokawa, K. Oikawa, and K. Anzai, “Thermodynamic assessment of the KCl–K2CO3–NaCl–Na2CO3 system,” Calphad. 31 (2), 155–163 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shaposhnikov.

Additional information

Original Russian Text © V.V. Shaposhnikov, L.Ya. Aranovich, 2015, published in Geokhimiya, 2015, No. 9, pp. 855–861.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, V.V., Aranovich, L.Y. Experimental study of model granite melting in the presence of alkali carbonate solutions at 400 MPa. Geochem. Int. 53, 838–844 (2015). https://doi.org/10.1134/S0016702915090074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915090074

Keywords

Navigation