Skip to main content
Log in

Chlorine partitioning between melt and aqueous chloride fluid during granite magma. Degassing I. Decompression-induced melt degassing

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Based on available experimental data, a computer model was developed for the description of chlorine distribution between a magmatic melt of metaluminous granite composition and an aqueous chloride fluid phase formed during the decompression degassing of magma at pressures ranging from 5 to 0.5–0.3 kbar and temperatures of 800 ± 25°C. The model accounts for the dependence of fluid/melt Cl partition coefficient on pressure and Cl content of the melt. It allows the calculation of Cl and H2O redistribution between melt and fluid during the decompression degassing of magmas under both closed-system conditions, when fluid remains in the system, and open-system conditions, when the released fluid phase is completely of partly removed from the system. The results of numerical modeling revealed the influence of the initial Cl and H2O contents in melt and the degree of system openness on variations in the concentrations of these volatiles in aqueous fluid and melt during magma ascent toward the surface under near-isothermal conditions. The highest Cl concentrations of the fluid (C flCl ) are attained at the early stages of decompression degassing at high pressures. With decreasing pressure, C flCl decreases at a rate that increases at increasing degree of system openness. During open-system degassing, the Cl content of melt (C mCl ) also decreases. In contrast, under closed-system conditions, C mCl decreases initially with decreasing pressure, reaches a minimum, and then increases. If decompression degassing begins at P ≤ 1.0-1.25 kbar, C mCl changes only slightly irrespective of the initial Cl content of the melt and the degree of system openness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Alletti, D. R. Baker, B. Scaillet, A. Aiuppa, R. Moretti, and L. Ottolini, “Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at Mount Etna,” Chem. Geol. 263, 37–50 (2009).

    Article  Google Scholar 

  • A. Audétat and T. Pettke, “The magmatic–hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rio del Medio and Caáda Pinabete plutons in northern New Mexico (USA),” Geochim. Cosmochim. Acta 67, 97–121 (2003).

    Article  Google Scholar 

  • R. J. Bodnar, C. W. Burnham, and S. M. Sterner, “Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000°C and 1500 bars,” Geochim. Cosmochim. Acta 49, 1861–1873 (1985).

    Article  Google Scholar 

  • A. Yu. Borisova, M. Pichavant, J.-M. Beny, O. Rouer, and J. Pronost, “Constraints on dacitic magma degassing and regime of the June 15, 1991, climactic eruption of Mount Pinatubo (Philippines): new data on melt and crystal inclusions in quartz,” J. Volcanol. Geotherm. Res. 145, 35–67 (2005).

    Article  Google Scholar 

  • R. E. Botcharnikov, H. Behrens, F. Holtz, J. Koepke, and H. Sato, “Sulfur and chlorine solubility in Mt Unzen rhyodacite melt at 850°C and 200 MPa,” Chem. Geol. 213, 207–225 (2004).

    Article  Google Scholar 

  • C. W. Burnham, “Magmas and hydrothermal fluids,” in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., Ed. by H. L. Barnes, (Wiley-Interscience, 1979), pp. 71–136.

    Google Scholar 

  • C. W. Burnham, J. R. Holloway, and N. F. Davis, “The specific volume of water in the range 1000 to 8900 bars, 20° to 900°C,” Am. J. Sci. 267-A, 70–95 (1969).

    Google Scholar 

  • P. A. Candela and P. M. Piccoli, “Model ore-metal partitioning from melts into vapor and vapor/brine mixtures,” in Magmas, Fluids, and Ore Deposits, Ed. by J.F.H. Thompson, Min. Ass. Canada 23, 101–127 (1995).

    Google Scholar 

  • M. R. Carroll “Chlorine solubility in evolved alkaline magmas,” Ann. Geophys. 48, 619–631 (2005).

    Google Scholar 

  • H. E. Cathey and B. P. Nash, “The Cougar Point Tuff: implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot,” J. Petrol. 45, 27–58 (2004).

    Article  Google Scholar 

  • A. Chabiron, A. P. Alyoshin, M. Cuney, E. Deloule, V. N. Golubev, V. I. Velitchkin, and B. Poty, “Geochemistry of the rhyolitic magmas from the Streltsovka caldera (Transbaikalia, Russia): a melt inclusion study,” Chem. Geol. 175, 273–290 (2001).

    Article  Google Scholar 

  • V. Y. Chevychelov “Chlorine dissolution in fluid-rich granitic melts: the effect of calcium addition,” Geochem. Int. 37, 456–467 (1999).

    Google Scholar 

  • R. L. Christiansen, “The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho and Montana,” U. S. Geol. Surv. Prof. Pap. 729-G, 1–145 (2001).

    Google Scholar 

  • J. S. Cline and R. J. Bodnar, “Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt,” J. Geophys. Res. 96, 8113–8126 (1991).

    Article  Google Scholar 

  • E. Cottrell, J. E. Gardner, and M. J. Rutherford, “Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece),” Contrib. Mineral. Petrol. 135, 315–331 (1999).

    Article  Google Scholar 

  • A. Di Muro, B. Villemant, G. Montagnac, B. Scaillet, and B. Reynard, “Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry,” Geochim. Cosmochim. Acta 70, 2868–2884 (2006).

    Article  Google Scholar 

  • D. B. Dingwell, D. W. Harris, and C. M. Scarf, “The solubility of H2O in melts in the system SiO2–Al2O3-Na2O–K2O at 1 to 2 kilobars,” J. Geol. 92, 387–395 (1984).

    Article  Google Scholar 

  • N. W. Dunbar and R. L. Hervig, “Volatile and trace element composition of melt inclusions from the Lower Bandelier Tuff: Implictions for magma chamber processes and eruptive style,” J. Geophys. Res. B97, 15151–15170 (1992). GEOROCK (http://georoc.mpch-mainz.gwdg.de/georoc/)

    Google Scholar 

  • W. F. Giggenbach, “Chemical composition of volcanic gases,” in Monitoring and Mitigation of Volcanic Hazards, Ed. by R. Scarpa and R.I. Tilling (Springer, Berlin–Heidelberg, 1996), pp. 221–256.

    Chapter  Google Scholar 

  • H. J. Greenwood, “The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressure and 450 and 800°C,” Am. J. Sci. 267-A, 191–208 (1969).

    Google Scholar 

  • W. E. Halter and J. D. Webster, “The magmatic to hydrothermal transition and its bearing on ore-forming systems,” Chem. Geol. 210, 1–6 (2004).

    Article  Google Scholar 

  • H. D. Holland, “Granites, solutions and base metal deposits,” Econ. Geol. Bull. Soc. Econ. Geol. 67, 281–301(1972).

    Article  Google Scholar 

  • F. Holtz, H. Behrens, D. B. Dingwell, and W. Johannes, “H2O solubility in haplogranitic melts: compositional, pressure, and temperature dependence,” Am. Mineral. 80, 94–108 (1995).

    Google Scholar 

  • M. C. S. Humphreys, J. D. Blundy, and R. S. J. Sparks, “Shallow-level decompression crystallization and deep magma supply at Sheveluch volcano,” Contrib. Mineral. Petrol. 155, 45–61 (2008).

    Article  Google Scholar 

  • P. D. Ihinger, Y. Zhang, and E. M. Stolper, “The speciation of dissolved water in rhyolitic melt,” Geochim. Cosmochim. Acta. 63, 3567–3578 (1999).

    Article  Google Scholar 

  • B. Iwasaki and T. Katsura, “The solubility of hydrogen chloride in volcanic rock melts at a total pressure of one atmosphere and at temperatures of 1200°C and 1290°C under anhydrous conditions,” Bull. Chem. Soc. Japan 40, 554–561 (1967).

    Article  Google Scholar 

  • E. R. Johnson, V. S. Kamenetsky, J. Mcphie, and P. J. Wallace, “Degassing of the H2O-rich rhyolites of the Okataina volcanic center, Taupo volcanic zone, New Zealand,” Geology 39, 311–314(2011).

    Article  Google Scholar 

  • A. A. Kadik, E. B. Lebedev, and N. I. Khitarov, Water in Magmatic Melts (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  • A. J. R. Kent, J. D. Blundy, K. V. Cashman, K. M. Cooper, C. L. Donnely, J. S. Pallister, M. K. Reagan, M. C. Rowe, and C. R. Thornber, “Vapor transfer prior to the October 2004 eruption of Mount St. Helens, Washington,” Geology 35, 231–234 (2007).

    Article  Google Scholar 

  • I. A. Kilinc, and C. W. Burnham, “Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kb,” Econ. Geol. 67, 231–236 (1972).

    Article  Google Scholar 

  • C. L. Knight and R. J. Bodnar, “Synthetic fluid inclusions: IX. Critical pVTX properties of NaCl–H2O solutions,” Geochim. Cosmochim. Acta 53, 3–8 (1989).

    Article  Google Scholar 

  • A. M. Koleszar, A. J. R. Kent, P. J. Wallace, and W. E. Scott, “Controls on long-term low explosivity at andesitic arc volcanoes: insights from Mount Hood, Oregon,” J. Volcanol. Geotherm. Res. 219–220, 1–14 (2012).

    Article  Google Scholar 

  • I. F. Kravchuk and H. Keppler, “Distribution of chloride between aqueous fluids and felsic melts at 2 kbar and 800°C,” Eur. J. Mineral. 6, 913–923 (1994).

    Article  Google Scholar 

  • A. Liebscher “Experimental studies in model fluid systems,” in Fluid–Fluid Interactions, Ed. by A. Liebscher and A.H. Heinrich, Rev. Mineral. Geochem. 65, 15–47 (2007).

    Google Scholar 

  • Y. Liu, Y. Zhang, and H. Behrens “Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts,” J. Volcanol. Geotherm. Res. 143, 219–235 (2005).

    Article  Google Scholar 

  • O. A. Lukanin, B. N. Ryzhenko, and N. A. Kurovskaya, “Zn and Pb solubility and speciation in aqueous chloride fluids at T–P parameters corresponding to granitoid magma degassing and crystallization,” Geochem. Int. 51 (10), 802–830 (2013).

    Article  Google Scholar 

  • R. Macdonald, R. L. Smith, and J. E. Thomas, Jr., “Chemistry of the subalkalic silicic obsidians,” U. S. Geol. Surv. Prof. Pap. No. 1523, 1–214 (1992).

    Google Scholar 

  • S. D. Malinin and I. F. Kravchuk, “Distribution of elements in equilibria with fluid participation,” in Fluids and Redox Equilibria in Magmatic Systems, Ed. by A.A. Kadik (Nauka, Moscow, 1991), pp. 57–117 [in Russian].

    Google Scholar 

  • C. W. Mandeville, J. D. Webster, C. M. Tappen, B. E. Taylor, A. Timbal, A. Sasaki, E. H. Hauri, and C. R. Bacon, “Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater lake, Oregon,” Geochim. Cosmochim. Acta 73, 2978–3012 (2009).

    Article  Google Scholar 

  • C. R. Manley, “Morphology and maturation of melt inclusions in quartz phenocrysts from the Badlands rhyolite lava flow, Southwestern Idaho,” Am. Mineral. 81, 158–168 (1996).

    Google Scholar 

  • C. P. Mann, P. J. Wallace, and J. Stix, “Phenocryst-hosted melt inclusions record stalling of magma during ascent in the conduit and upper magma reservoir prior to volcanian explosions, Soufriere Hills volcano, Montserrat, West Indies,” Bull. Volcanol. 75 (687) (2013).

    Google Scholar 

  • N. Metrich and H. J. Rutherford, “Experimental study of chlorine in hydrous silicic melts,” Geochim. Cosmochim. Acta 56, 607–616 (1992).

    Article  Google Scholar 

  • I. A. Nairn, P. Shane, J. W. Cole, G. S. Leonard, S. Self, and N. J. Pearson, “Rhyolite magma processes of the ~AD 1315 Kaharoa eruption episode, Tarawera Volcano, New Zealand,” J. Volcanol. Geotherm. Res. 131, 265–294 (2004).

    Article  Google Scholar 

  • T. Nakano and Urabe, T. “Calculated composition of fluids released from a crystallizing granitic melt: Importance of pressure on the genesis of ore forming fluid,” Geochem. J. 23 (6), 307–320 (1989).

    Article  Google Scholar 

  • V. B. Naumov, M. L. Tolstykh, E. N. Grib, V. L. Leonov, and N. N. Kononkova, “Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic center, Kamchatka, and Golovnina Volcano, Kunashir Island: evidence from inclusions in minerals,” Petrology 16, 1–18 (2008).

    Article  Google Scholar 

  • Y. Özdemir, J. D. Blundy, and N. Güleç, “The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, Eastern Anatolia, Turkey,” Contrib. Mineral. Petrol. 162, 573–597 (2011).

    Article  Google Scholar 

  • M. E. Perkins, F. H. Brown, W. P. Nash, W. C. McIntosh, and S. K. Williams, “Sequence, age, and source of silicic fallout tuffs in middle to Late Miocene basins of the Northern Basin and Range province,” Bull. Geol. Soc. Am. 110, 344–360 (1998).

    Article  Google Scholar 

  • M. J. Reed, P. A. Candela, and P. M. Piccoli, “The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800°C and 200 MPa,” Contrib. Miner. Petrol. 140, 251–261 (2000).

    Article  Google Scholar 

  • E. Roedder, “Fluid inclusions as samples of ore fluids,” in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., Ed. by H.L. Barnes (Wiley-Interscience, 1979), pp. 684–737.

    Google Scholar 

  • I. D. Ryabchikov, Thermodynamics of the Fluid Phase of Granitoid Magmas (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  • B. N. Ryzhenko, “Intra-ionic interactions: the reason for concentration dependence of chlorine partitioning coefficients in the system aqueous fluid–alumosilicate melt,” Dokl. Earth Sci. 433 (2), 1048–1052 (2010)

    Article  Google Scholar 

  • B. N. Ryzhenko, “Accumulation of ore elements in endogenous fluids: a thermodynamic approach,” Geochem. Int. 49 (8), 838–847 (2011).

    Article  Google Scholar 

  • A. Sandiford, B. Alloway, and P. Shane, “A 28 000–6600 cal yr record of local and distal volcanism preserved in a Paleolake, Auckland, New Zealand,” New Zealand J. Geol. Geophys. 44, 323–336 (2001).

    Article  Google Scholar 

  • P. A. R. Shane, “A widespread, early Pleistocene tephra (Potaka tephra, 1 MA) in New Zealand: character, distribution, and implications,” New Zealand. J. Geol. Geophys. 37, 25–35 (1994).

    Article  Google Scholar 

  • P. A. R. Shane and P. C. Froggatt, “Glass chemistry, paleomagnetism, and correlation of middle pleistocene tuffs in Southern North Island, New Zealand, and Western Pacific,” New Zealand J. Geol. Geophys. 34, 203–211 (1991).

    Article  Google Scholar 

  • P. Shane, E. L. Sikes, and T. P. Guilderson, “Tephra beds in deep-sea cores off Northern New Zealand: implications for the history of Taupo volcanic zone, Mayor island and White island volcanoes,” J. Volcanol. Geotherm. Res. 154, 276–290 (2006).

    Article  Google Scholar 

  • P. Shane, S. B. Martin, V. C. Smith, K. F. Beggs, M. B. Darragh, J. W. Cole, and I. A. Nairn, “Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera Volcanic Complex, New Zealand,” J. Volcanol. Geotherm. Res. 164, 1–26 (2007).

    Article  Google Scholar 

  • P. Shane, I. A. Nairn, V. C. Smith, M. B. Darragh, K. F. Beggs, and J. W. Cole “Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka eruption episode, New Zealand,” Lithos 103, 527–549 (2008).

    Article  Google Scholar 

  • H. Shinohara, “Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport,” Geochim. Cosmochim. Acta 58, 5215–5221 (1994).

    Article  Google Scholar 

  • H. Shinohara, “A missing link between volcanic degassing and experimental studies on chloride partitioning,” Chem. Geol. 263, 51–59 (2009).

    Article  Google Scholar 

  • H. Shinohara, J. T. Iiyma, and S. Matsuo, “Partition of chlorine compounds between silicate melt and hydrothermal solution: I. Partition of NaCl–KCl,” Geochim. Cosmochim. Acta 53, 2617–2630 (1989).

    Article  Google Scholar 

  • Yu. V. Shvarov, “Algorithmization of the numeric equilibrium modeling of dynamic geochemical processes,” Geochem. Int. 37 (6), 571–576 (1999).

    Google Scholar 

  • S. Signorelli and M. R. Carroll, “Solubility and fluid–melt partitioning of Cl in hydrous phonolitic melts,” Geochim. Cosmochim. Acta 64, 2851–2862 (2000).

    Article  Google Scholar 

  • S. Signorelli and M. R. Carroll, “Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolithic melts,” Contrib. Mineral. Petrol. 143, 209–218 (2002).

    Article  Google Scholar 

  • V. C. Smith and P. Shane, “Geochemical characteristics of the widespread Tahuna tephra, New Zealand,” J. Geol. Geophys. 45, 103–107 (2002).

    Article  Google Scholar 

  • V. C. Smith, P. Shane, and I. A. Nairn, “Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo volcanic zone, New Zealand,” J. Volcanol. Geotherm. Res. 148, 372–406 (2005).

    Article  Google Scholar 

  • V. Smith, P. Shane, and I. A. Nairn, “Insights into silicic melt generation using plagioclase, quartz and melt inclusions from the caldera-forming Rotoiti eruption, Taupo volcanic zone, New Zealand,” Contrib. Mineral. Petrol. 160, 951–971 (2010).

    Article  Google Scholar 

  • S. Sourirajan and G. Kennedy, “The system H2O-NaCl at elevated temperatures and pressures,” Am. J. Sci. 260, 115–141 (1962).

    Article  Google Scholar 

  • H. Sumino, K. Ikehata, A. Shimizu, K. Nagoa, and S. Nakada, “Magmatic processes of Unzen Volcano revealed by excess argon distribution in zero-age plagioclase phenocrysts,” J. Volcanol. Geotherm. Res. 175, 189–207 (2008).

    Article  Google Scholar 

  • R. B. Symonds, W. I. Rose, G. J. S. Bluth, and T. M. Gerlach, “Volcanic gas studies—methods, results, and applications,” Rev. Mineral. 30, 1–66 (1994).

    Google Scholar 

  • C. M. Tappen, J. D. Webster, C. W. Mandeville, and D. Roderick, “Petrology and geochemistry of ca. 2100–1000 a.b.p. magmas of Augustine Volcano, Alaska, based on analysis of prehistoric pumiceous tephra,” J. Volcanol. Geotherm. Res. 183, 42–62 (2009).

    Article  Google Scholar 

  • M. L. Tolstykh, V. B. Naumov, A. D. Babanskii, G. E. Bogoyavlenskaya, and S. A. Khubunaya, “Chemical composition, volatile components, and trace elements in andesitic magmas of the Kurile-Kamchatka region,” Petrology 11, 407–425 (2003).

    Google Scholar 

  • M. P. Vukalovich, Thermophysical Properties of Water and Water Vapor (Mashinostroenie, Moscow, 1967) [in Russian].

    Google Scholar 

  • P. J. Wallace, A. T. Anderson, Jr., and A. M. Davis, “Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the bishop tuff,” J. Geophys. Res. B104, 20097–20122 (1999).

    Google Scholar 

  • R. C. Walter, W. K. Hart, and J. A. Westgate, “Petrogenesis of a basalt–rhyolite tephra from the west-central Afar, Ethiopia,” Contrib. Mineral. Petrol. 95, 462–480 (1987).

    Article  Google Scholar 

  • J. D. Webster, “Fluid–melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar,” Geochim. Cosmochim. Acta 56, 679–687 (1992).

    Article  Google Scholar 

  • J. D. Webster, “Chloride solubility in felsic melts and the role of chloride in magmatic degassing,” J. Petrol. 38, 1793–1807 (1997).

    Article  Google Scholar 

  • J. D. Webster, R. J. Kinzler, and A. Mathez, “Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing,” Geochim. Cosmochim. Acta 63, 729–738 (1999).

    Article  Google Scholar 

  • B. J. Williamson, A. Di Muro, C. J. Horwell, O. Spieler, and E. W. Llewellin, “Injection of vesicular magma into an andesitic dome at the effusive-explosive transition,” Earth Planet. Sci. Lett. 295, 83–90 (2010).

    Article  Google Scholar 

  • Z. Zajacz, P. A. Candela, P. M. Piccoli, and C. S. Valle, “The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations,” Geochim. Cosmochim. Acta 89, 81–101 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Lukanin.

Additional information

Original Russian Text © O.A. Lukanin, 2015, published in Geokhimiya, 2015, No. 9, pp. 801–827.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukanin, O.A. Chlorine partitioning between melt and aqueous chloride fluid during granite magma. Degassing I. Decompression-induced melt degassing. Geochem. Int. 53, 786–810 (2015). https://doi.org/10.1134/S0016702915090049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915090049

Keywords

Navigation