Skip to main content
Log in

Zn in hydrothermal systems: Thermodynamic description of hydroxide, chloride, and hydrosulfide complexes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents critical analysis of literature data on the stability constants of aqueous species in the system Zn-O-H-S−II-Cl. In order to more accurately determine the composition and stability of chloride Zn complexes, additional experiments were carried out to determine the solubility of sphalerite ZnSc in chloride-sulfide solutions at 175°C and the saturated vapor pressure of the solution. Having processed the data, we obtained the thermodynamic properties at 25°C and parameters of the HKF (Helgeson-Kirkham-Flowers) equation of state (EoS) for hydroxide, chloride and hydrosulfide Zn complexes. The constants of sphalerite dissolution reactions with the formation of hydrosulfide and, particularly, chloride complexes increase with increasing temperature. The predominant Zn transport species in high-temperatures (>250°C) chloride-sulfide hydrothermal solutions are chloride complexes, first of all, ZnCl 2−4 . As the temperature decreases, the concentrations of complexes with smaller numbers of Cl ligands increase. The region of weakly acidic to alkaline pH is dominated by hydrosulfide Zn complexes, but their concentrations in equilibrium with sphalerite are relatively low (a few ppm at 400°C and S concentrations <0.1 mol kg−1) and decreases with a temperature decrease. In the region dominated by chloride complexes, the concentration of dissolved Zn can amount to a few fractions of a percent at near-neutral pH, 400°C, and m(NaCl) = 1.0 and increases if the fluid becomes more acidic. An extremely important factor controlling the concentrations of dissolved Zn is temperature: cooling leads to the effective precipitation of sphalerite, particularly in the region dominated by chloride complexes. The thermodynamic properties of the solid phases and parameters of the HKF model for aqueous species in the system Zn-O-H-S-II-Cl are presented in the on-line version of the FreeGC database (http://www-b.ga.gov.au/minerals/research/methodology/geofluids/thermo/calculator/search.jsp), which enables calculating the Gibbs energy values of components of the system and reaction constants involving these components at PT parameters up to 600°C and 3 kbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Plyasunov and I. P. Ivanov, “Experimental study of oxide zinc solubility in sodium chloride solutions up to 600°C and 1000 bar,” Geokhimiya, no. 11, 1605–1617 (1990).

    Google Scholar 

  2. P. Benezeth, D. A. Palmer, D. J. Wesolowski, and C. Xiao, “New measurements of the solubility of zinc oxide from 150 to 350gC,” J. Solution Chem. 31(12), 947–973 (2002).

    Article  Google Scholar 

  3. B. R. Tagirov, O. M. Suleimenov, and T. M. Seward, “Zinc complexation in aqueous sulfide solutions: Determination of the stoichiometry and stability of complexes via ZnS(cr) solubility measurements at 100°C and 150 bars,” Geochim. Cosmochim. Acta 71, 4942–4953 (2007).

    Article  Google Scholar 

  4. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C,” Am. J. Sci. 281, 1249–1516 (1981).

    Article  Google Scholar 

  5. J. C. Tanger, IV and H. C. Helgeson, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for standard partial molal properties of ions and electrolytes,” Am. J. Sci. 288, 19–98 (1988).

    Article  Google Scholar 

  6. N. N. Akinfiev and A. V. Zotov, “Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25-500°C and pressures of 1-2000 bar,” Geochem. Int. 39(10), pp. 990–1006 (2001).

    Google Scholar 

  7. N. N. Akinfiev and B. R. Tagirov, “Effect of selenium on silver transport and precipitation by hydrothermal solutions: thermodynamic description of the Ag-Se-S-Cl-O-H system,” Geol. Ore Dep. 48(5), 460–472 (2006).

    Google Scholar 

  8. M. Von Born, “Volumen und Hydratationswarme der Ionen,” Zeitschr. Physik 1, 45–48 (1920).

    Article  Google Scholar 

  9. E. L. Shock and H. C. Helgeson, “Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C,” Geochim. Cosmochim. Acta 52, 2009–2036 (1988).

    Article  Google Scholar 

  10. Yu. V. Shvarov, “HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by windows,” Geochem. Int. 46(8), 834–839 (2008).

    Article  Google Scholar 

  11. B. R. Tagirov and T. M. Seward, “Hydrosulfide/sulfide complexes of zinc to 250°C and thermodynamic properties of sphalerite,” Chem. Geol. 269, 301–311 (2010).

    Article  Google Scholar 

  12. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  13. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb,” Geochim. Cosmochim. Acta. 61, 1359–1412 (1997).

    Article  Google Scholar 

  14. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes,” Geochim. Cosmochim. Acta 61, 907–950 (1997).

    Article  Google Scholar 

  15. B. R. Tagirov, A. V. Zotov, and N. N. Akinfiev, “Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq),” Geochim. Cosmochim. Acta 61, 4267–4280 (1997).

    Article  Google Scholar 

  16. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemishere Publishing Corp, New York, 1988).

    Google Scholar 

  17. J. M. Stuve, “Low-temperature heat capacities of sphalerite and wurtzite,” Bur. Mines. Rep. Invest., no. 7940 (1974).

    Google Scholar 

  18. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., no. 2131 (1995).

    Google Scholar 

  19. Yu. V. Shvarov, “OptimA: the program for calculation of standard free energies of aqueous species using results of chemical experiments,” (2010) (http://www.geol.msu.ru/deps/geochems/soft/).

    Google Scholar 

  20. Yu. V. Shvarov, OptimB: the program for calculation of HKF parameters of an aqueous species using a set of values of its standard free energy at various temperatures and pressures. http://www.geol.msu.ru/deps/geochems/soft/).

  21. K. J. Jackson and H. C. Helgeson, “Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I. Calculation of the solubility of cassiterite at high pressures and temperatures,” Geochim. Cosmochim. Acta 49, 1–22 (1985).

    Article  Google Scholar 

  22. T. M. Herrington, M. G. Roffey, and D. P. Smith, “Density of aqueous electrolytes: MnCl2, CoCl2, NiCl2, ZnCl2, and CdCl2 from 25 to 75°C at 1 atm,” J. Chem. Eng. Data 31, 221–225 (1986).

    Article  Google Scholar 

  23. R. F. Pogue and G. Atkinson, “Solution thermodynamics of first row transition elements. 3. Apparent molal volumes of aqueous ZnCl2 and Zn(ClO4)2 from 15 to 55°C and an examination of solute-solute and solutesolvent interactions,” J. Soln. Chem. 18, 249–263 (1989).

    Article  Google Scholar 

  24. P. Pan and P. R. Tremaine, “Thermodynamics of aqueous zinc: Standard partial heat capacities and volumes of Zn 2+(aq) from 10 to 55°C,” Geochim. Cosmochim Acta 58(22), 4867–4874 (1994).

    Article  Google Scholar 

  25. D. J. Wesolowski, P. Benezeth, and D. A. Palmer, “ZnO solubility and Zn2+ complexation by chloride and sulfate in acidic solutions to 290°C with in-situ pH measurement,” Geochim. Cosmochim. Acta 62(6), 971–984 (1998).

    Article  Google Scholar 

  26. W. von Feitknecht and E. Häberli,, “Über die Löslich-keitsprodukte einiger Hydroxyverbindungen des Zinks,” Helv. Chim. Acta 33, 922–936 (1950).

    Article  Google Scholar 

  27. P. B. Barton and P. M. Bethke, “Thermodynamic properties of some synthetic zinc and copper minerals,” Econ. Geol. 53, 914–915 (1958).

    Google Scholar 

  28. Y. Hanzawa, D. Hiroishi, C. Matsuura, K. Ishigure, M. Nagao, M. Haginuma, “Hydrolysis of zinc ion and solubility of zinc oxide in high-temperature aqueous systems,” Nucl. Sci. Eng. 127, 292–299 (1997).

    Google Scholar 

  29. W. L. Boucier and H. L. Barnes, “Ore solution chemistry. VII. Stabilities of chloride and bisulfide complexes of zinc to 350°C,” Econ. Geol. 82, 1839–1863 (1987).

    Article  Google Scholar 

  30. A. V. Plyasunov, A. B. Belonozhko, I. P. Ivanov, and I. L. Khodakovskii, “Solubility of zinc oxide in alkaline solutions at temperatures of 200–350°C and saturated vapor pressure,” Geokhimiya, No. 3, 409–417 (1988).

    Google Scholar 

  31. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, “Zinc(II) oxide solubility and phase behavior in aqueous sodium phosphate solutions at elevated temperatures,” J. Soln. Chem 21, 1153–1176 (1992).

    Article  Google Scholar 

  32. H. C. Helgeson, Complexing and Hydrothermal Ore Deposition (Pergamon, New York, 1964).

    Google Scholar 

  33. H. L. Barnes, “Solubilities of ore minerals,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H. L. Barnes (Whiley, New York, 1979), pp. 404–461.

    Google Scholar 

  34. D. Crerar, S. Wood, S. Brantley, and A. Bocarsly, “Chemical controls on solubility of ore-forming minerals in hydrothermal solutions,” Can. Mineral. 23, 333–352 (1985).

    Google Scholar 

  35. B. N. Melent’ev, V. V. Ivanenko, and L. A. Pamfilova, Solubility of Ore-Forming Sulfides under Hydrothermal Conditions (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  36. J. R. Ruaya and T. M. Seward, “The stability of chlorozinc (II) complexes in hydrothermal solutions up to 350°C,” Geochim. Cosmochim. Acta 50, 651–661 (1986).

    Article  Google Scholar 

  37. J. R. Ruaya and T. M. Seward, “The ion-pair constant and other thermodynamic properties of HCl up to 350°C,” Geochim. Cosmochim. Acta 51, 121–130 (1987).

    Article  Google Scholar 

  38. V. V. Reukov and A. V. Zotov, “Determination of the HCl dissociation constant at a temperature of 350°C and 200 bars of pressure by the potentiometric method using a ceramic electrode,” Geol. Ore Dep. 48(2), 144–149 (2006).

    Article  Google Scholar 

  39. G. L. Cygan, J. J. Hemley, and W. M. D’Angelo, “An experimental study of zinc chloride speciation from 300 to 600°C and 0.5 to 2.0 kbar in buffered hydrothermal solutions,” Geochim. Cosmochim. Acta 58, 4841–4855 (1994).

    Article  Google Scholar 

  40. E. Uchida, M. Naito, and S. Ueda, “Aqueous speciation of zinc chloride in supercritical hydrothermal solutions from 500 to 700°C and 0.5 to 1.0 kb,” Geochem. J. 32, 1–9 (1998).

    Article  Google Scholar 

  41. M. M. Yang, D. A. Crerar, and D. E. Irish, “Raman spectral studies of aqueous zinc bromide solutions to 300°C at pressures of 9 MPa,” J. Sol. Chem. 17, 751–762 (1988).

    Article  Google Scholar 

  42. N. A. Marley and J. S. Gaffney, “Laser Raman spectral determination of zinc halide complexes in aqueous solutions as a function of temperature and pressure,” Appl. Spectrosc. 44, 469–476 (1990).

    Article  Google Scholar 

  43. R. A. Mayanovic, A. J. Anderson, and S. Bajt, “Microbeam XAFS investigations on fluid inclusions,” Mater. Res. Soc. Proc. 437, 201–206 (1997).

    Article  Google Scholar 

  44. A. J. Anderson, R. A. Mayanovic, and S. Bajt, “A micro-XAFS study of aqueous chlorozinc complexing up to 430°C in saline fluid inclusions from a high-level granitic pegmatite,” Can. Mineral. 36, 511–524 (1998).

    Google Scholar 

  45. R. A. Mayanovic, A. J. Anderson, W. A. Bassett, and I.-M. Chou, “XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell,” J. Synchr. Rad. 6, 195–197 (1999).

    Article  Google Scholar 

  46. D. J. Harris, J. P. Brodholt, and D. M. Sherman, “Zinc complexation in hydrothermal chloride brines: results from ab intio molecular dynamic calculations,” J. Phys. Chem. 107, 1050–1054 (2003).

    Article  Google Scholar 

  47. M. V. Borisov, Geochemical and Thermodynamic Models for the Genesis of Hydrothermal Vein Ore Mineralization (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  48. W. Voigt, V. Brendler, K. Marsh, R. Rarey, H. Wanner, M. Gaune-Escard, P. Cloke, Th. Vercouter, E. Bastrakov, and S. Hagemann, “Quality assurance in thermodynamic databases for performance assessment studies in waste disposal,” Pure Appl. Chem. 79(5), 883–894 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Akinfiev.

Additional information

Original Russian Text © N.N. Akinfiev, B.R. Tagirov, 2014, published in Geokhimiya, 2014, Vol. 52, No. 3, pp. 214–232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinfiev, N.N., Tagirov, B.R. Zn in hydrothermal systems: Thermodynamic description of hydroxide, chloride, and hydrosulfide complexes. Geochem. Int. 52, 197–214 (2014). https://doi.org/10.1134/S0016702914030021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914030021

Keywords

Navigation