Skip to main content
Log in

Isotope geochemistry and geochronology of the gabbro of the Volkovsky Massif, Urals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

40Ar-39Ar, Sm-Nd, U-Pb, and Lu-Hf isotope data are reported on the gabbro of the Volkovsky Massif, the only massif of the Uralian Platinum Belt wherein economic copper-iron-vanadium and high-grade gold-palladium mineralization is present. The massif is made up of gabbro blocks with concentrically zoned structure and diorite intrusions in its core. In the northeast and southwest, the gabbro is cut by syenite of the Kushva Massif. Gabbro blocks mainly consist of the olivine-anorthite gabbro, while labradorite two- pyroxene gabbro intersects both olivine-anorthite gabbro and Ti-magnetite and copper-PGE mineralization developed in them. The study of both gabbro types by Sm-Nd isochron and U-Pb (SHRIMP II) zircon methods with subsequent REE and Lu-Hf isotope analysis of zircon made it possible to date reliably (428 ± 7 Ma (SHRIMP) and 436 ± 21 Ma (Sm-Nd)) postore labradorite gabbro and, correspondingly, the upper age limit of the mineralization of the Volkovsky Massif. Ore-bearing olivine-anorthite gabbro contain four different-age zircon populations: 2682 ± 37–972 ± 18 Ma, 655 ± 15 to 565 ± 9 Ma; 450 ± 12 Ma, and 343 ± 8 Ma. Hf-Nd isotope systematics showed that zircon with an age of 450 ± 12 Ma presumably marks the formation age of the rocks, the older zircon was trapped, while zircon with an age of 343 ± 8 Ma was formed during low-temperature transformation of the rock and sometimes contains excess radiogenic Hf. Proterozoic xenogenic zircon was inherited from diverse rocks of ancient crust, while the oldest grain with an age of 2065 Ma was possibly formed in a deep mantle source. Vendian zircon was presumably also entrapped, and its morphology and geochemistry point to the crystallization from a basaltic melt. The abundance of pre-Paleozoic zircon in the olivine-anorthite gabbro suggests significant contribution of ancient material in their petrogenesis. This material could serve as source of ore components (metals and sulfur) for unique copper-sulfide gold-PGE mineralization of the Volkovsky Massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kashin, Copper-Titanomagnetite Mineralization in Basic Intrusive Rocks of the Urals (Izd-vo AN SSSR, Moscow, 1948) [in Russian].

    Google Scholar 

  2. K. D. Timokhov, “Relation of copper-sulfide and titanomagnetite mineralization with host rocks at the Volkovskyskoe Deposit,” in Magmatism, Metamorphism, and Metallogeny of the Urals. Proceedings of the 1st Uralian Petrographic Conference, Sverdlovsk, Russia, 1963 (Sverdlovsk, 1963), pp. 439–443 [in Russian].

    Google Scholar 

  3. Yu. S. Nikolaichenkov, “Some features in distribution of ore bodies of the Volkovskyskoe copper-iron-vanadium deposits,” in Geology and Prospecting of Ore Deposits (SFAN AN SSSR, Irkutsk, 1977), pp. 50–58 [in Russian].

    Google Scholar 

  4. V. G. Fominykh and E. I. Klevtsov, “Volkovskoe deposit,” in Titanomagnetite and BIF Formations: Iron Ore Deposits of the Urals (UNTs AN SSSR, Sverdlovsk, 1984) [in Russian].

    Google Scholar 

  5. V. I. Bognibov and P. A. Balykin, “Petrochemical features of ore-bearing gabbroids of the Volkovsky Massif, Middle Urals,” in Petrochemistry of Ore-Bearing Gabbroid Formations (Nauka, Novosibirsk, 1990), pp. 118–130 [in Russian].

    Google Scholar 

  6. K. K. Zoloev, Yu. A. Volchenko, V. A. Koroteev, I. A. Malakhov, A. N. Mardiros’yan, and V. N. Khrypov, PGM Mineralization in Geological Complexes of the Urals (DPR Ural’sk. Okr., OAO UGSE, IGG UrORAN, UGGGA, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  7. Yu. A. Poltavets, V. N. Sazonov, Z. I. Poltavets, and G. S. Nechkin, “Distribution of noble metals in ore mineral assemblages of the Volkovsky gabbroic pluton, Central Urals,” Geochem. Int. 44, 143–163 (2006).

    Article  Google Scholar 

  8. E. V. Anikina and A. V. Alekseev, “Mineralogical-geochemical characteristics of the gold-palladium mineralization in the Volkovsky gabbro-diorite massif, Urals Platinum Belt,” Litosfera, No. 5, 75–100 (2010).

    Google Scholar 

  9. A. A. Efimov, Yu. L. Ronkin, S. Zindern, U. Kramm, O. P. Lepikhina, and O. Yu. Popova, “New U-Pb data on zircon from plagiogranite of the Kytlym Massif: isotopic ages of late events in the history of the Uralian Platinum Belt,” Dokl. Earth Sci. 403A (6), 896–900 (2005).

    Google Scholar 

  10. D. Bosch, O. Bruguier, A. A. Efimov, and A. A. Krasnobayev, “U-Pb Silurian age for a gabbro of the Platinum-Bearing Belt of the Middle Urals (Russia): evidence for beginning of closure of the Uralian Ocean,” Geol. Soc. London, Mem. 32, 443–448 (2006).

    Article  Google Scholar 

  11. F. Bea, G. B. Fershtater, P. Montero, M. Whitehouse, V. Ya. Levin, J. H. Scarrow, H. Austerheim, and E. V. Pushkarev, “Recycling of continental crust into the mantle as revealed by Kytlym dunite zircon, Ural Mts, Russia,” Terra Nova 13 (6), 407–412 (2001).

    Article  Google Scholar 

  12. V. I. Maegov, G. A. Petrov, Yu. L. Ronkin, and O. P. Lepikhina, “First results of Sm-Nd data on olivine-anorthite gabbro of the Uralian Platinum Belt,” in Proceedings of 12th A.N. Zavaritskii Reading. Ophiolites: Geology, Petrology, Metallogeny, and Geodynamics, Yekaterinburg, Russia, 2006 (UrO RAN, Yekaterinburg, 2006), pp. 110–113 [in Russian].

    Google Scholar 

  13. V. S. Popov and B. V. Belyatskii, “age of dunite-clinopyroxenite-tylaite association of the Kytlym Massif, the Platinum Belt of the Urals,” Dokl. Earth Sci. 409 (5), 795–800 (2006).

    Article  Google Scholar 

  14. A. A. Krasnobaev, A. Bea, G. B. Fershtater, and P. Montero, “The polychronous nature of zircon in gabbroids of the Ural Platinum Belt and the issue of the Precambrian in the Tagil Synclinorium,” Dokl. Earth Sci. 413A (3), 457–461 (2007).

    Article  Google Scholar 

  15. K. N. Malitch, A. A. Efimov, and Yu. L. Ronkin, “Archean U-Pb isotope age of zircon from dunite of the Nizhny Tagil Massif (the Uralian Platinum Belt),” Dokl. Earth Sci. 427 (5), 851–855 (2009).

    Article  Google Scholar 

  16. A. A. Efimov, V. S. Popov, A. A. Kremenetskii, and B. V. Belyatskii, “Blocks of pre-Ordovician rocks in the Platinum Belt of the Urals: Sm-Nd isotope age of the dunite-clinopyroxenite-tylaite complex of the Denezhkin Kamen Massif,” Litosfera, No. 2, 35–46 (2010).

  17. V. I. Maegov, “Petrology of the Volkovskoe deposit of the copper sulfide and apatite-titanomagnetite ores, Middle Urals,” Ural’sk. Geol. Zh., No. 5, 57–71 (1999).

  18. O. A. Vorob”eva, N. V. Samoilova, and E. V. Sveshnikova, Gabbro-Pyroxenite-Dunite Belt of the Middle Urals (Izd-vo AN SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  19. D. S. Shteinberg and M. V. Eremina, “New data on the petrology of the Volkovskyskoe Deposit,” in Magmatism, Metamorphism, and Metallogeny of the Urals (UNTs AN SSSR, Sverdlovsk, 1963), Vol. 1, pp. 431–438 [in Russian].

    Google Scholar 

  20. V. V. Murzin, V. P. Moloshag, and Yu. A. Volchenko, “Paragenesis of noble metal minerals in the Volkovsky-type copper-iron-vanadium ores at the Urals,” Dokl. Akad. Nauk SSSR 300 (5), 1200–1202 (1988).

    Google Scholar 

  21. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  22. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London. Spec. Publ. 42, 313–345 (1989).

    Google Scholar 

  23. G. B. Fershtater, F. Bea, E. V. Pushkarev, G. Garuti, P. Montero, and F. Zaccarini, “Insight into the petrogenesis of the Urals Platinum Belt: new geochemical evidence,” Geochem. Int. 37 (4), 302–319 (1999).

    Google Scholar 

  24. V. R. Shmelev, “Magmatic complexes of the Main Ural Fault Zone, Cis-Polar Sector: new geochemical data,” Litosfera, No. 2, 41–59 (2005).

  25. A. A. Efimov and L. P. Efimova, Kytlym Platinum Massif (Nedra, Moscow, 1967) [in Russian].

    Google Scholar 

  26. K. I. Lokhov, I. N. Kapitonov, E. M. Prasolov, and S. A. Sergeev, “Extremely radiogenic hafnium in the zircon from Precambrian calciphyres,” Dokl. Earth Sci. 425A (3), 463–466 (2009).

    Article  Google Scholar 

  27. J. Blichert-Toft and F. Albarede, “The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system,” Earth Planet. Sci. Lett. 148, 243–258 (1997).

    Article  Google Scholar 

  28. A. Bouvier, J. D. Vervoort, and P. J. Patchett, “The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from uneqilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  29. E. Scherer, C. Munker, and K. Mezger, “Calibration of the lutenium-hafnium clock,” Science 293, 683–687 (2001).

    Article  Google Scholar 

  30. W. L. Griffin, N. J. Pearson, E. Belousova, S. E. Jackson, E. van Achtenbergh, S. Y. O’Reilly, and S. R. Shee, “The Hf isotope composition of cratonic mantle: LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites,” Geochim. Cosmochim. Acta 64, 133–147 (2000).

    Article  Google Scholar 

  31. Geochronology and Thermochronology by the 40 Ar/39 Ar Method, Ed. by I. McDougall and T. M. Harrison (Oxford University Press, 1999).

    Google Scholar 

  32. B. Bingen, H. Austrheim, M. J. Whitehouse, and W. J. Davis, “Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W. Norway,” Contrib. Mineral. Petrol. 147, 671–683 (2004).

    Article  Google Scholar 

  33. P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” in Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 27–62 (2003).

    Google Scholar 

  34. N. A. Gol’tsin, K. I. Lokhov, I. N. Kapitonov, Yu. S. Polekhovskii, A. F. Lobikov, and S. A. Sergeev, “Multistate transformations of the Ludicovian highly carbonaceous rocks of the Onega trough,” Regional. Geol. Metallogeniya, No. 41, 66–79 (2010).

  35. P. M. Valley, C. M. Fischer, J. M. Hanchar, R. Lam, and M. Tubratt, “Hafnium isotopes in zircon: a tracer of fluid-rock interaction during magnetite-apatite (‘Kiruna-Type’) mineralization,” Chem. Geol. 275, 208–220 (2010).

    Article  Google Scholar 

  36. E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,” Contrib. Mineral. Petrol. 143, 602–622 (2002).

    Article  Google Scholar 

  37. M. J. Whitehouse, “On the overabundance of light rare earth elements in terrestrial zircon and its implications for Earth’s earliest magmatic differentiation,” Earth Planet. Sci. Lett. 204, 333–346 (2002).

    Article  Google Scholar 

  38. O. V. Knauf, “U-Pb age of zircon from dunite-clinopyroxenite cores of the Kytlym (Middle Urals) and Gal’moenan (Southern Koryakia) zoned Uralian-type massifs,” Vestn. St. Petersburg. Univ., Ser. 7 Geol. Geograph., No. 4, 64–71 (2009).

  39. G. B. Fershtater, A. A. Krasnobaev, F. Bea, P. Montero, and N. S. Borodina, “Geodynamic settings and history of the Paleozoic intrusive magmatism of the Central and Southern Urals: Results of zircon dating,” Geotectonics 41 (6), 465–486 (2007).

    Article  Google Scholar 

  40. V. N. Puchkov, O. M. Rosen, D. Z. Zhuravlev, and E. V. Bibikova, “Contamination of Silurian volcanic rocks in the Tagil Synform by Precambrian zircon,” Dokl. Earth Sci. 411A (9), 1381–1384 (2006).

    Article  Google Scholar 

  41. A. A. Krasnobaev, E. V. Anikina, and A. I. Rusin, “Zirconology of dunite of the Nizhnii Tagil Massif (Middle Urals),” Dokl. Earth Sci. 436 (6), 809–813 (2011).

    Google Scholar 

  42. V. R. Shmelev and S. S. Filippova, “Structure and formation mechanism of the Nizhny Tagil dunite-clinopyroxenite massif, Central Urals,” Geotectonics 44 (4), 344–362 (2010).

    Article  Google Scholar 

  43. R. Maas, P. D. Kinny, I. S. Williams, and W. Compston, “The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircon from Mt. Narrey and Jack Hills, Western Australia,” Geochim. Cosmochim. Acta 56, 1281–1300 (1992).

    Article  Google Scholar 

  44. B. Schulz, R. Klemd, and H. Bratz, “Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement,” Geochim. Cosmochim. Acta 70, 679–710 (2006).

    Google Scholar 

  45. D. Visona, V. Caironi, A. Carraro, L. Dallai, A. M. Fioretty, and M. Fanning, “Zircon megacrysts from basalts of the Venetian Volcanic Province (NE Italy): U.Pb ages, oxygen isotopes and REE data,” Lithos 94, 168–180 (2007).

    Article  Google Scholar 

  46. P. W. O. Hoskin, “Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia,” Geochim. Cosmochim. Acta 69, 637–648 (2005).

    Article  Google Scholar 

  47. D. Rubatto, “Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism,” Chem. Geol. 184, 123–138 (2002).

    Google Scholar 

  48. E. Paletter, A. Cheilletz, D. Gasquet, A. Mouttaqi, M. Annich, A. E. Hakour, E. Deloule, and G. Feraud, “Hydrothermal zircon: a tool for ion microprobe U.Pb dating of gold mineralization (Tamlalt-Menhouhou gold Deposit, Morocco,” Chem. Geol. 245, 135–161 (2007).

    Article  Google Scholar 

  49. I. Peytcheva, A. von Quadt, N. Georgiev, Zh. Ivanov, C. A. Heinrich, and M. Frank, “Combining trace-element compositions, U.Pb geochronology and Hf isotopes in zircon to unravel complex calc-alkaline magma chambers in the Upper Cretaceous Srednogorie Zone (Bulgaria),” Lithos 104, 405–427 (2008).

    Article  Google Scholar 

  50. K. I. Lokhov, T. E. Saltykova, I. N. Kapitonov, E. S. Bogomolov, S. A. Sergeev, and S. S. Shevchenko, “Correct interpretation of U-Pb zircon age using hafnium and neodymium isotope geochemistry: evidence from some magmatic complexes of the East European platform basement,” Regional. Geol. Metallogeniya, No. 38, 43–53 (2009).

  51. V. J. M. Salters and W. M. White, “Hf isotope constraints on mantle evolution,” Chem. Geol. 145, 447–460 (1998).

    Article  Google Scholar 

  52. J. D. Vervoort and J. Blichert-Toft, “Evolution of depleted mantle: Hf evidence from juvenile rocks through time,” Geochim. Cosmochim. Acta 63, 533–556 (1999).

    Article  Google Scholar 

  53. J. D. Vervoort, P. J. Patchett, J. Blichert-Toft, and F. Albarede, “Relationships between Lu-Hf and Sm.Nd isotopic systems in the global sedimentary system,” Earth Planet. Sci. Lett. 168, 79–99 (1999).

    Article  Google Scholar 

  54. S. Gracham, D. D. Lambert, S. R. Shee, and N. L. Pearson, “Juvenile lithospheric mantle enrichment and the formation of alkaline ultramafic magma sources: Re.Os, Lu.Hf and Sm.Nd isotopic systematics of the Norseman melnoites, Western Australia,” Chem. Geol. 186, 215–233 (2002).

    Article  Google Scholar 

  55. V. N. Puchkov, Geology of the Urals and Cis-Urals: Actual Problems of Stratigraphy, Tectonics, Geodynamics, and Metallogeny (IG UNTs RAN, Ufa, 2010) [in Russian].

    Google Scholar 

  56. A. A. Efimov, Gabbro-Hyperbasite Complexes of the Urals and the Ophiolite Problem (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  57. A. A. Efimov, L. P. Efimova, and V. I. Maegov, “Tectonics of the Platinum Belt of the Urals: relation of lithological complexes and mechanism of structure formation,” Geotectonics, No. 3, 4–46 (1993).

  58. G. N. Savel’eva, A. N. Pertsev, O. V. Astrakhantsev, E. A. Denisova, F. Boudier, D. Bosch, and A. V. Puchkova, “Kytlym Pluton, North Urals: structure and emplacement history,” Geotectonics 33 (2), 119–141 (1999).

    Google Scholar 

  59. O. V. Petrov, S. A. Sergeev, E. M. Prasolov, V. O. Khalenev, and K. I. Lokhov, “Geochronological and isotope geochemical characteristics of mafic intrusions of the Norilsk region,” Dokl. Earth Sci. 434 (1), 1272–1274 (2010).

    Article  Google Scholar 

  60. A. L. Konovalov, K. I. Lokhov, A. N. Mel’gunov, N. G. Berezhnaya, E. S. Bogomolov, I. N. Kapitonov, and S. L. Presnyakov, “Pre-Ordovician granitoids and molybdenite ores of Kharbei (the Polyar Uras): geology, isotopic geochronology, and geochemistry,” Regional. Geol. Metallogeniya 45, 12–28 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Anikina.

Additional information

Original Russian Text © E.V. Anikina, A.A. Krasnobaev, Yu.L. Ronkin, A.V. Alexeev, S.V. Busharina, I.N. Kapitonov, K.I. Lokhov, 2014, published in Geokhimiya, 2014, Vol. 52, No. 2, pp. 99–123.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikina, E.V., Krasnobaev, A.A., Ronkin, Y.L. et al. Isotope geochemistry and geochronology of the gabbro of the Volkovsky Massif, Urals. Geochem. Int. 52, 89–110 (2014). https://doi.org/10.1134/S0016702914020025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914020025

Keywords

Navigation