Skip to main content
Log in

Aquatic geochemistry of small lakes: Effects of environment changes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper reports the results of an extensive investigation of water chemistry in the small lakes of European Russia and Western Siberia along a climatic gradient. It was demonstrated that small lakes unaffected by any direct contamination can be used as indicators of natural geochemical conditions of water formation, as well as global and regional fluxes of airborne pollution and climate warming. A novel concept was developed for within- and between-zone variability in water chemistry over vast areas of tundra, taiga, forest, and steppe, and contributions of natural and anthropogenic factors to its formation under present-day conditions were estimated. A proposed predictive scenario showed that climate warming will result in an increase in water salinity in southern regions and ubiquitous phosphorus enrichment in terrestrial waters; the hydrologic and geochemical conditions of water formation in northern Siberia will change significantly in response to permafrost thawing. Zonal features in the development of anthropogenically-induced processes in terrestrial surface waters (acidification, eutrophication, and metal enrichment) were determined. It was demonstrated that, in addition to naturally acidified lakes with high contents of humic acids, acid lakes of anthropogenic origin occur over the whole humid region discussed here, and acidification processes were characterized for each subregion. The trophic status of lakes and limitation of their bioproductivity with respect to nutrients were estimated. The concentrations and distribution of trace elements were analyzed in terrestrial waters from various climatic zones of European Russia and Western Siberia, and the first estimates were obtained for the mean concentrations and coefficients of migration of a wide range of elements in terrestrial freshwaters. We distinguished a group of metal (Mo, As, U, Bi, Sb, Cd, Ag, Se, Re, Pb, Cd, W, etc.) the enrichment of which in natural waters results from their global dispersion in the environment. Experimental results and natural observations are presented on the processes of metal ion complexation with humus substances, and sequences of their increasing activity in competing for organic ligands were derived. Data are presented on the speciation of metals depending on natural water chemistry in the tundra, taiga, and steppe zones. The pioneering investigations on the geochemistry of natural waters allowed us to substantiate new regional norms for water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vernadsky, “History of natural waters,” in V.I. Vernadsky. Proceedings to Biography, Ed. by S. L. Shvartsev and F. T. Yanshina (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. W. H. Schlesinger, Biogeochemistry. An Analysis of Global Change (Academic Press, San Diego, 1997).

    Google Scholar 

  3. EPA (United States Environmental Protection Agency, http://www.epa.com) International Council on Metals and the Environment. Persistence, Bioaccumulation and Toxicity (Parametrix Inc., Washington, 1995).

  4. T. I. Moiseenko, L. P. Kudryavtseva, and N. A. Gashkina, Trace Elements in Continental Surface Waters: Technophile Properties, Bioaccumulation, and Ecotoxicology (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  5. J. N. Galloway, “Acid deposition: perspectives in time and space,” Water Air Soil Pollut. 85, 15–24 (1995).

    Google Scholar 

  6. W. O. Nelson and P. G. C. Campbell, “The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments: a literature review,” Environ. Poll. 71, 91–130 (1991).

    Google Scholar 

  7. T. I. Moiseenko, “The fate of metals in Arctic surface waters. Method for defining critical levels,” Sci. Tot. Environ. 236, 19–39 (1999).

    Google Scholar 

  8. T. I. Moiseenko, “Acidification and related behavior of chemical elements in water,” Geochem. Int. 43(10), 1028–1035 (2005).

    Google Scholar 

  9. T. I. Moiseenko, Aqueous Toxicology: Fundamental and Applied Aspects (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  10. P. M. Vitousek, H. A. Mooney, J. Lubchenco, and J. M. Melillo, “Human domination of Earth’s ecosystems,” Science 277, 494–499 (1997).

    Google Scholar 

  11. H. Feuchtmayr, R. Moran, K. Hatton, et al., “Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms,” J. Appl. Ecol. 46, 713–723 (2009).

    Google Scholar 

  12. A. P. Fersman, Geochemistry (ONTI-KhIMTEORET, Leningrad, 1937) [in Russian].

    Google Scholar 

  13. R. W. Battarbee, S. Patrick, M. Kernan, et al., “High mountain lakes and atmospherically transported pollutants,” in Global Change and Mountain Regions, Ed. by U. M. Huber, H. K. M. Bugmann, and M. A. Reasoner (Springer, 2005), pp. 113–132.

    Google Scholar 

  14. B. L. Skjelkvåle and R. F. Wright,, “Mountain lakes: sensitivity to acid deposition and global climate change,” Ambio 27, 280–286 (1998).

    Google Scholar 

  15. J. Alcamo, P. Mayerhofer, R. Guardans, et al., “An integrated assessment of regional airpollution and climate change in Europe: findings of the AIR-CLIM Project,” Environ. Sci. Policy 5, 257–272 (2002).

    Google Scholar 

  16. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II, and III to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by R. K. Pachauri and A. Reisinger (IPCC, Geneva, 2007).

    Google Scholar 

  17. D. W. Schindler, “The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium,” Can. J. Fish. Aquat. Sci. 58, 18–29 (2001)

    Google Scholar 

  18. J. Sereda, N. Bogard, J. Hudson, et al., “Climate warming and the onset of salinization: rapid changes in the limnology of two northern plains lakes,” Limnologica 41, 1–9 (2011).

    Google Scholar 

  19. R. F. Wright, S. A. Norton, D. F. Brakke et al., “Experimental verification of episodic acidification of freshwaters by sea salts,” Nature 334, 422 (1988).

    Google Scholar 

  20. “Reports on State and Protection of Environment of the Russian Federation,” http://www.mnr.gov.ru/regulatory/list.php?part=1101

  21. B. Kvaeven, M. Ulstein, and B. Skjelkvale, “ICP Waters-an international program for surface water monitoring,” in Water Air and Soil Pollution (Norwegian Institute for Water Research, Oslo, 2001), pp. 775–780.

    Google Scholar 

  22. J. Mannio, Responses of Headwater Lakes to Air Pollution Changes in Finland (University of Helsinki, Helsinki, 2001).

    Google Scholar 

  23. B. L. Skjelkvåle, T. Andersen, E. Fjeld, et al., “Heavy metal surveys in Nordic lakes: concentrations, geographic patterns, and relation to critical limits,” AMBIO 30, 2–10 (2001).

    Google Scholar 

  24. T. I. Moiseenko, L. P. Kydrjavzeva, and S. S. Sandimirov, “Principles and methods of water quality studies for airborne polluted water bodies: case study of Kola Subarctic,” Water Resour. 27, 81–86 (2001).

    Google Scholar 

  25. ICP-Water. Programme Manuel. Programme Centre. An International Programme for Surface Water Monitoring (NIVA-Report, Oslo, 2010).

  26. A. Henriksen, B. L. Skjelvåle, T. Moiseenko, et al., “Northern European lake survey, 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland, and Wales,” AMBIO 27, 80–91 (1995).

    Google Scholar 

  27. T. I. Moiseenko, Water Acidification: Factors, Mechanisms, and Environmental Consequences (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  28. Canadian Acid Rain Assessment, Ed. by D. S. Jeffries (Minister of Canada Environment, Toronto, 1997), Vol. 3.

    Google Scholar 

  29. B. L. Skjelkvale, J. L. Stoddard, and T. Andersen, “Trends in surface water acidification in Europe and North America (1989–1998),” Water, Air, and Soil Pollut. 130, 787 (2001).

    Google Scholar 

  30. T. I. Moiseenko, B. L. Skjelkvale, and N. A. Gashkina, “Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: effects of air pollution and climate change,” Appl. Geochem. 28, 69–79 (2013).

    Google Scholar 

  31. T. I. Moiseenko, “Acidification and critical loads in surface waters: Kola, Northern Russia,” AMBIO 23, 418–424 (1994).

    Google Scholar 

  32. A. Henriksen, I. Kamari, M. Posch, et al., “Critical loads of acidity: Nordic surface waters,” AMBIO 21, 356–363 (1992).

    Google Scholar 

  33. A. Henriksen, B. L. Skjelkvale, J. Mannio, et al., Results of National Lake Surveys 1995 in Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland, and Wales (Norwegian Institute for Water Research, Oslo, 1997).

    Google Scholar 

  34. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, 1992).

  35. B. M. Wathne and R. Mosello, Quality Control of the Chemical Data (Norwegian Institute for Water Research-C.N.R. Instituto Italiano di Idrobiologia, Oslo, 1998).

    Google Scholar 

  36. R. Mosello, M. Bianchi, Geiss HAQUACON-MedBas “Acid Rain Analysis” (Ispra, 1994–1997).

    Google Scholar 

  37. A. A. Kudryavtsev, A. N. Znamenshchikov, S. S. Volkova, et al., “Model mixture of hydrocarbons for IR-Spectrophotometry and fluorometry of oil products,” Vestn. Tyum. Gos. Univ. 5, 63–70 (2011).

    Google Scholar 

  38. B. G. Oliver, E. M. Thurman, and R. L. Malcolm, “The contribution of humic substances to the acidity of natural waters,” Geochim. Cosmochim. Acta 47, 2031–2035 (1983).

    Google Scholar 

  39. L. Schaug, Quality Assurance Plan for EMEP. EMEP/CCC Report 1/88 (Norwegian Institute Air Research, Lillestrom, 1988).

    Google Scholar 

  40. J. Rodier, L’analyse de l’eau (Dunod, Orleans, 1984).

    Google Scholar 

  41. L. J. Miles and K. J. Yost, “Quality analysis of USGS precipitation chemistry data for New York,” Atmos. Environ. 16, 2889–2898 (1982).

    Google Scholar 

  42. W. Stumm, Aquatic Chemistry (Wiley and Sons, New York, 1981).

    Google Scholar 

  43. H. Hovard, Intercomparison 1024: pH, Cond, HCO 3 , NO 3 -N, Cl, SO 4 , Ca, Mg, Na, K, TOC, Al, Fe, Mn, Cd, Pb, Cu, Ni, and Zn. The International Cooperative Programme on Assessment and Monitoring Effects of Air Pollution on Rivers and Lakes (Norwegian Institute for Water Research, Oslo, 2010).

    Google Scholar 

  44. I. Makinen, Interlaboratory Comparison Test, National Board of Water and the Environment (Research Laboratory, Helsinki, 1997).

    Google Scholar 

  45. M. S. Shuman and G. P. Woodward, “Stability constants of copper organic chelates in aquatic samples,” Environ. Sci. Technol. 8(11), 809–813 (1977).

    Google Scholar 

  46. M. S. Shuman and J. L. Cromer, “Copper association with aquatic fulvic and humic acids estimation of conditional formation constants with a titrimetric anodic stripping voltammetry procedure,” Environ. Sci. Technol. 17, 345–355 (1979).

    Google Scholar 

  47. J. Inczedy, Analytical Applications of Complex Equilibria (Halsted, 1976; Mir, Moscow, 1979).

    Google Scholar 

  48. R. Sutton and G. Sposito, “Molecular structure in soil humic substances: the new view,” Environ. Sci. Technol. 39, 9009–9015 (2005)

    Google Scholar 

  49. D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Mir, 1996) [in Russian].

    Google Scholar 

  50. H. L. Shlöfer,, Komplexbildung in Lösung (Springer, Berlin, 1961; Khimiya, Moscow, 1969).

    Google Scholar 

  51. J. Buffle, F. L. Greter, and W. Haerdi, “Measurement of complexation properties of humic and fulvic acids in natural waters with lead and copper ion-selective electrodes,” Anal. Chem. 2(49), 216–222 (1977).

    Google Scholar 

  52. J. Buffle and F. L. Greter, “Voltammetric study of humic and fulvic substances. Part II. Mechanism of reaction of the fulvic complexes on the mercury electrode,” J. Electroanal. Chem. 2(101), 231–251 (1979).

    Google Scholar 

  53. R. Ernst, H. E. Allen, and K. H. Mansu, “Characterization of trace metal species and measurement of trace metal stability constants by electrochemical techniques, Water Res. 11(9), 969–979 (1975).

    Google Scholar 

  54. J. N. Butler, Ionic Equilibrium (Addison-Wesley, Reading, 1964; Khimiya, Leningrad, 1973).

    Google Scholar 

  55. A. These, M. Winkler, C. Thomas, et al., “Determination of molecular formulas and structural regularities of low molecular weight fulvic acids by size-exclusion chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry,” Mass Spectrom. 18, 1777–1786 (2004).

    Google Scholar 

  56. A. These and T. Reemtsma, “Structure-dependent reactivity of low molecular weight fulvic acid molecules during ozonation,” Environ. Sci. Technol. 39, 8382–8387 (2005).

    Google Scholar 

  57. I. Christl, C. J. Milne, D. G. Kinniburgh, et al., “Relating ion binding by fulvic and humic acids to chemical composition and molecular size,” Environ. Sci. Technol. 35, 2512–2517 (2001).

    Google Scholar 

  58. E. Tipping, “Modelling ion binding by humic acids. Colloid and surfaces,” Physicochem. Eng. Asp. 73, 117–131 (1993).

    Google Scholar 

  59. T. I. Moiseenko and N. A. Gashkina, Formation of Water Chemical Composition under Anthropogenic Impact Conditions (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  60. Glossary of Geology (Nedra, Moscow, 1978) [in Russian].

  61. Geological Formations (Terminological Handbook). Vol. 1. Common Conceptions. Magmatic Formations. Hydrothermal Formation. Vol. 2. Sedimentary, Volcanogenic-Sedimentary, and Metamorphic Formations (Nedra, Moscow, 1982) [in Russian].

  62. E. E. Milanovsky, Geology of the USSR (MGU, Moscow, 1987) [in Russian].

    Google Scholar 

  63. G. V. Voitkevich, A. V. Kokin, A. E. Miroshnikov, et al., Handbook on Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  64. National Atlas of Russia (Mosk. Gos. Univ., Moscow, 2007).

  65. National Soil Atlas of Russia (Mos. Gos. Univ., Moscow, 2011).

  66. G. V. Kalabin and T. I. Moiseenko, “Emission, transfer, and fall of acid precipitates in the Arctic regions,” Izv. Ross. Akad. Nauk, Ser. Geograf. 5, 50–61 (2011).

    Google Scholar 

  67. O. V. Soromotina, “Meteorological conditions of atmospheric pollution,” in Geoecological Problems of the Tyumen Region, Ed. by V. M. Kalinin (2004), Vol. 1, pp. 19–26 [in Russian].

    Google Scholar 

  68. A. A. Yuzhakov, “Assessment of water quality and anthropogenic loading of the minor river basins of the Zapolyarnyi Deposit,” in Geoecological Problems of the Tyumen Region, Ed. by V. M. Kalinin (2004), Vol. 1, pp. 131–142 [in Russian].

    Google Scholar 

  69. T. I. Moiseenko, L. P. Kudryavtseva, and S. S. Sandimirov, “The principles and techniques for studying water quality under conditions of airborne anthropogenic pollution of watersheds: case study of the Kola Subarctic region,” Water Resour. 1, 81–89 (2000).

    Google Scholar 

  70. R.A. Vollenweider, “Advances in defining critical loading levels for phosphorous in lake eutrophication,” Met. Ins. Ital. Jdrobion. 33(8–9), 53–83 (1979).

    Google Scholar 

  71. L. Håkanson and V. Boulion,, “Regularities in primary production, Secchi depth and fish yield and a new system to define trophic and humic state indices for lake ecosystems,” Int. Rev. Hydrobiol. 1(86), 23–62 (2001).

    Google Scholar 

  72. S. A. Arkhipov, The Quaternary in West Siberia (Nauka, Novosibirsk, 1971) [in Russian].

    Google Scholar 

  73. D. V. Moskovchenko, Petroleum Production and Environment: Ecological-Geochemical Analysis of the Tyumen Region (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  74. E. I. Valeeva and D. V. Moskovchenko, Role of Water-Swamp Lands in the Steady Evolution of Northern Western Siberia (IPOS SO RAN, Tyumen, 2001) [in Russian].

    Google Scholar 

  75. M. A. Glazovskaya, Geochemistry of Natural and Technogenic Landscapes of the USSR (Vyssh. Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  76. A. B. Sherstyukov, Climatic Changes and Their Consequences in the Permafrost Zone of Russia (GU VNI-IGMI-MTsD, Obninsk, 2009) [in Russian].

    Google Scholar 

  77. A. V. Pavlov and G. V. Malkova, Present-Day Climatic Changes in Northern Russia: an Album of Small-Scale Maps (Geo, Novosibirsk, 2005) [in Russian].

    Google Scholar 

  78. R. F. Wright and P. J. Dillon, “Role of climate change recovery of acidified surface water,” Hydrol. Earth Syst. Sci. 12, 333–335 (2008).

    Google Scholar 

  79. P. J. Dillon, L. A. Molot, and M. Futter, “A note on the effects of El Niño-related drought on the recovery of acidified lakes,” Int. J. Environ. Monit. Assess. 46, 105–111 (1997).

    Google Scholar 

  80. J. Bjerknes, “Atlantic sea-air interaction,” Adv. Geophys. 10, 1–82 (1964).

    Google Scholar 

  81. J. W. Hurrell, “Decadal trends in the North Atlantic oscillation, regional temperatures and precipitation,” Science 269, 676–679 (1995).

    Google Scholar 

  82. M. J. Rodwell, D. P. Rowell, and C. K. Folland, “Oceanic forcing of the wintertime North Atlantic Oscillation and European climate,” Nature 398, 320–323 (1999).

    Google Scholar 

  83. C. D. Evans and D. T. Monteith, Water Chemistry Discussion. Acid Waters Monitoring Network: 10 Year Report (ENSIS Publishing, London, 2000).

    Google Scholar 

  84. S. E. Bayley, D. W. Schindler, B. R. Parker, et al., “Effect of forest fire and drought on the acidity of a base-poor boreal forest stream: similarities between climatic warming and acidic precipitation,” Biogeochemistry 17, 191–204 (1997).

    Google Scholar 

  85. Geocryology of the USSR. West Siberia, Ed. by E. D. Ershov (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  86. A. E. Kontorovich, “Chemical composition of sedimentary rocks of the West Siberian plate,” Dokl. Akad. Nauk SSSR, Ser. Geogr. 4(163), 157–168 (1965).

    Google Scholar 

  87. Yamal Peninsula: an Engineering-Geological Outline, Ed. by V. T. Trofimov, Yu. B. Badu, V. G. Kudryashov, and N. G. Firsov (Mosk. Univ., Moscow, 1975) [in Russian].

    Google Scholar 

  88. V. Ya. Khrenov, “Content of trace elements in the soil-forming rocks of the Northern Tyumen Region,” Geograf. Prir. Res. 3, 163–165 (1987).

    Google Scholar 

  89. E. G. Nechaeva, “Landscape-geochemical features of zones of the Ob-Irtysh valley-taiga area,” in Soil Geography and Landscape Geochemistry of Siberia (IG SO RAN, Irkutsk, 1988), pp. 3–17 [in Russian].

    Google Scholar 

  90. V. Ya. Khrenov, Soils of Cryolithozones of West Siberia: Physicochemical Properties, Geochemistry, and Morphology (Nauka, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  91. A. F. Alimov, Principles of the Theory of Aquatic Ecosystem Functioning (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  92. L. L. Rossolimo, Change of Limnic Ecosystems under Anthropogenic Impact (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  93. A. Lerman, F. T. Mackenzie, Ver. L. May, “Coupling of the perturbed C-N-P cycles in industrial time,” Aquatic Geochem. 10, 3–32 (2004).

    Google Scholar 

  94. J. N. Gallaway, F. J. Dentener, D. G. Capone, et al., “Nitrogen cycles: past, present, and future,” Biogeochemistry 70, 153–226 (2004).

    Google Scholar 

  95. S. P. Kitaev, Coefficients of Concentration Variations of Matters in Water of Atmospheric Precipitation and Ichthyomass of Lakes in Different Natural Zones of Europe and North America (Operative-Information Materials) (KarNTs RAN, Petrozavodsk, 1999) [in Russian].

    Google Scholar 

  96. V. S. Savenko and A.V. Savenko, Geochemistry of Phosphorus in the Global Geochemical Cycle (GEOS, Moscow, 2007) [in Russian].

    Google Scholar 

  97. D. S. Orlov, Humic Substances in the Biosphere (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  98. OECD: Eutrophication of Waters. Monitoring, Assessment and Control(OECD, Paris, 1982).

  99. G. Phillips, O.-P. Pietiläinen, L. Carvalho, et al., “Chlorophyll-nutrient relationships of different lake types using a large European dataset,” Aquat. Ecol. 42, 213–226 (2008).

    Google Scholar 

  100. T. A. Pristova, “Biological cycle of substances in secondary mixed forests of moderate taiga,” Ekologiya 3, 89–195 (2008).

    Google Scholar 

  101. N. I. Bazilevich and A. A. Titlyanova, Biotic Cycle on Five Continents: Nitrogen and Mineral Constituents in Land Ecosystems (Nauka (Novosibirsk, 2008) [in Russian].

    Google Scholar 

  102. D. Hutchinson, A Treatise of Limnology. Vol. 1. Geography, Physics, and Chemistry (Wiley, New York, 1957) [in Russian].

    Google Scholar 

  103. E. P. Odum, Fundamentals of Ecology (W.B. Saunders, Philadelphia, 1971).

    Google Scholar 

  104. T. M. Mikheeva, Succession of Species in the Phytoplankton: Main Factors (Beloruss. Gos. Univ., Minsk, 1983) [in Russian].

    Google Scholar 

  105. G. F. Hutchinson, A Treatise of Limnology. Volume 2. Introduction to Lake Biology and Limnoplankton (Wiley, New York, 1967).

    Google Scholar 

  106. H. Klapper, Control of Eutrophication in Inland Water (Ellis Horwood, Chichester, 1991).

    Google Scholar 

  107. D. Tilman, S. S. Kilham, and P. Kilham, “Phytoplankton community ecology: the role of limiting nutrients,” Ann. Rev. Ecol. Syst. 13, 349–372 (1982).

    Google Scholar 

  108. C. S. Reynolds, “Non-determinism to probability, or N: P in the community ecology of phytoplankton,” Arch. Hydrobiol. 1(146), 23–35 (1999).

    Google Scholar 

  109. M. M. Marinho and S. M. F. O. Azevedo, “Influence of N/P ratio on competitive abilities for nitrogen and phosphorus by Microcystis aeruginosa and Aulacoseira distans,” Aquat. Ecol. 41, 525–533 (2007).

    Google Scholar 

  110. V. H. Smith, “The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis,” Limnol. Oceanogr. 23, 1248–1255 (1982).

    Google Scholar 

  111. E. Jeppesen, M. Søndergaard, J. P. Jensen, et al., “Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow hypertrophic lake,” Ecosystems 1, 250–267 (1998).

    Google Scholar 

  112. A. Wilander and G. Persson, “Recovery from eutrophication: experiences of reduced phosphorus input to the four largest lakes of Sweden,” Ambio 8(30), 475–485 (2001).

    Google Scholar 

  113. T. J. Sullivan, Aquatic Effect of Acid Deposition (Levis Publishers, Boca Buton, 2001).

    Google Scholar 

  114. V. T. Komov, V. I. Lazareva, and I. K. Stepanova, “Anthropogenic pollution of small lakes of Northern European Russia,” Biol. Vnutr. Vod 3, 5–17 (1997).

    Google Scholar 

  115. M. Yu. Semenov, Acid Fallouts on the Siberian Areas: Calculation and Mapping of Permissible Loads (Nauka, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  116. B. S. Smolyakov, “Problems of acid fallouts in Northern West Siberia,” Sibirsk. Ekol. Zh. 1, 21–30 (2000).

    Google Scholar 

  117. H. Rodhe, J. Landgner, L. Gallardo, et al., “Global scale transport of acidifying pollutants,” Water Air Soil Pollut. 85, 37–50 (1995).

    Google Scholar 

  118. T. E. Gredel, C. M. Benkovitz, W. C. Keene, et al., “Global emission inventories of acid-related compounds,” Water Air Soil Pollut. 85, 25–36 (1995).

    Google Scholar 

  119. J. C. I. Kuylenstierna, M. Rodhe, S. Cinderby, et al., “Acidification in developing countries: ecosystem sensitivity and the critical load approach on a global scale,” AMBIO 30(1), 20–28 (2001).

    Google Scholar 

  120. EMEP/MSC-W 2000 Performance of EMEP Eulerian Acid Deposition Model for 1998, Ed. by K. Olendrzynski (EMEP, Oslo, 2000).

    Google Scholar 

  121. V. F. Protasov, Ecology, Health, and Environmental Protection in Russia (Finansy i statistika, Moscow, 2000) [in Russian].

    Google Scholar 

  122. M. A. Sutton, C. J. Place, M. Eager, et al., “Assessment of the magnitude of ammonia emission in the United Kingdom,” Atmosph. Environ. 29, 1393–1412 (1995).

    Google Scholar 

  123. Hemispheric Transport of Air Pollution 2008. Air Pollution Studies (United Nations, Geneva, 2007).

  124. D. F. Brakke, A. Henriksen, and A. S. Norton, “The relative importance of acidity sources for humic lakes in Norway,” Nature 329, 432–434 (1987).

    Google Scholar 

  125. S. K. Jeffrey, S. A Norton, T. A. Haines, et al., “Mechanisms of episodic acidification in low-order streams in Maine,” Environ. Pollut. 78, 37–44 (1992).

    Google Scholar 

  126. R. Karlsson and E. Ljungstörm, “Nitrogen dioxide and sea salt-a laboratory study,” J. Aerosol Sci. 26, 39–50 (1995).

    Google Scholar 

  127. J. R. Kramer, C. S. Cronan, J. V. DePinto, H. F. Hemond, et al., Organic Acids and Acidification of Surface Waters Acidic Deposition Committee, Utility Air Regulatory Group (NET-WT, 1989).

    Google Scholar 

  128. J. O. Reuss, B. J. Cosby, and R. F. Wright, “Chemical processes governing soil and water acidification,” Nature 329, 28–32 (1987).

    Google Scholar 

  129. C. D. Evans, D. Chris, D. Monteith, et al., “Buffering of recovery from acidification by organic acids,” Sci. Total Environ. 404, 316–325 (2008).

    Google Scholar 

  130. C. D. Evans, D. Chris, D. T. Monteith, et al., “Hydrochloric acid: an overlooked driver of environmental change,” Environ. Sci. Technol. 45(5), 1887–1894 (2011).

    Google Scholar 

  131. J. P. Tuovinen, H. Laurila, H. A. Lattila, et al., “Impact of sulphur dioxide sources in the Kola Peninsula on air quality in northernmost Europe,” Atmosph. Environ. 27, 1379–1395 (1993).

    Google Scholar 

  132. J. D. Aber, K. J. Nadelhoffer, P. Steudler, et al., “Nitrogen saturation in northern forest ecosystemshypothesis and implications,” Bioscience 39, 378–386 (1989).

    Google Scholar 

  133. J. L. Stoddard, T. S. Traaen, and B. L. Skjelkvale, “Assessment of nitrogen leaching at JCP-waters sites (Europe and North America),” Water Air Soil Pollut. 130, 781–786 (2001).

    Google Scholar 

  134. C. J. Curtis, C. D. Evans, R. C. Helliwell, et al., “Nitrate leaching as a confounding factor in chemical recovery from acidification in UK upland waters,” Environ. Pollut. 137, 73–82 (2005).

    Google Scholar 

  135. D. T. Monteith, J. L. Stoddard, C. D. Evansde, et al., “Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry,” Nature 450, 537–549 (2007).

    Google Scholar 

  136. J. M. Clark, S. H. Bottrell, C. D. Evans, et al., “The importance of the relationship between scale and process in understanding long-term DOC dynamics,” Sci. Total Environ. 408, 2768–2775 (2010).

    Google Scholar 

  137. D. F. Brakke and D. H. Landers, “Chemical and physical characteristics of lakes in the Northeastern United States,” Environ. Sci. Technol. 222, 155–163 (1988).

    Google Scholar 

  138. D. V. Moskovchenko, G. N. Artamonova, F. G. Babushkin, “Formation of hydrochemical anomalies in the oil production fields in Northern Siberia,” Geoekologiya 5, 411–419 (2008).

    Google Scholar 

  139. V. N. Bashkin, “Assessment of the degree of risk under critical loads of pollutants on the ecosystem,” Geograf. Prir. Resur. 1, 35–38 (1999).

    Google Scholar 

  140. K. Johansson, E. Bringmark, L. Lindevall, et al., “Effects of acidification on the concentration metals in running water in Sweden,” Water Air Soil Pollut. 85, 779–784 (1995).

    Google Scholar 

  141. P. A. Linnik, “Comparative assessment of the role of different factors in the migration of metals from bottom deposits under conditions of experimental modeling,” in Proceedings of Scientific-Practical Conference on Modern Fundamental Problems of Hydrochemistry and Monitoring of the Surface Water Quality in Russia (RostovN, Rostov-on-Don, 2009), pp. 116–119.

    Google Scholar 

  142. A. I. Perel’man, Geochemistry of Elements in the Supergene Zone (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  143. N. F. Glazovskii, Technogenic Fluxes of Substances in the Biosphere. Extraction of Minerals and Geochemistry of Natural Ecosystems, Ed. by M. A. Glazovskaya (Nauka, Moscow, 1982) [in Russian].

  144. World’s Mineral Resources as of January 1, 1997. A Statistic Handbook (Official Edition) of “Aerogeologiya,” Ministry of Nature Management of FGUNPP (Informatsionno-analiticheskii tsentr “Mineral”, Moscow, 1998) [in Russian].

  145. World’s Mineral Resources as of January 1, 2001. A Statistic Handbook (Official Edition) of “Aerogeologiya,” Ministry of Nature Management of FGUNPP (Informatsionno-analiticheskii tsentr “Mineral”, Moscow, 2002) [in Russian].

  146. Mineral resources, 2007–2010. http://www.metalresearch.ru/page77.html

  147. J. W. Moore and S. Ramamoorthy, Heavy Metals in Natural Waters-Applied Monitoring and Impact Assessment (Springer, New York, 1984).

    Google Scholar 

  148. G. W. Bryan, “Heavy metal contamination in the sea,” in Marine Pollution, Ed. by R. Johnston (Acad. Press, London, 1976), pp. 185–302.

    Google Scholar 

  149. E. V. Venitsianov and A. P. Lepikhin, Physicochemical Principles of Modeling of Heavy Metal Migration and Transformation in Natural Waters (RosNIIVKh, Yekaterinburg, 2002) [in Russian].

    Google Scholar 

  150. A. G. Heath, Water Pollution and Fish Physiology (Lewis, London, 2002).

    Google Scholar 

  151. A. I. Perel’man and N. S. Kasimov, Landscape Geochemistry (Astreya-2000, Moscow, 1999) [in Russian].

    Google Scholar 

  152. M. Xu, Yan Rong, Zheng Chuguang, et al., “Status of element emission in a coal combustion process: a review,” Fuel Process. Technol. 85, 215–237 (2003).

    Google Scholar 

  153. E. B. Swain, D. R. Engstrom, M. E. Brigham, et al., “Increasing rates of atmospheric mercury deposition in midcontinental North America,” Science 257, 784–787 (1992).

    Google Scholar 

  154. F. William, F. Fitzgerald, H. Carl, et al., “Marine biogeochemical cycling of mercury,” Chem. Rev. 107, 641–662 (2007).

    Google Scholar 

  155. M. Meili, K. Bishop, L. Bridman, et al., “Critical levels of atmospheric pollution for operation modeling of mercury in forest and lakes ecosystems,” Sci. Total Environ. 304, 83–106 (2003).

    Google Scholar 

  156. E. L. Porter, R. A. Kent, D. E. Anderson, et al., “Development of proposed Canadian Environment Quality Guidelines for cadmium,” J. Geochem. Explor. 52, 205–219 (1995).

    Google Scholar 

  157. Cadmium in Fertilizers. Risks to Human Health and the Environment. Ministry of Agriculture and Forestry (Publications of the Ministry of Agriculture and Forestry, Finland, 1997).

  158. D. S. Orlov, “Trace elements in soils and living organisms,” Soros. Obrazovat. Zh. 1, 61–68 (1998).

    Google Scholar 

  159. V. A. Kovda, Principles of Soil Science (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  160. B. N. Ryzhenko and S. R. Krainov, “Physicochemical factors controlling the chemistry of waters in the supergenesis zone,” Geochem. Int. 40(8), 779–806 (2002).

    Google Scholar 

  161. N. F. Glazovskii, Modern Salt Accumulation in Arid Zones (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  162. Chemical Composition of Oils in Western Siberia, Ed. by G. F. Bol’shakov (SO Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  163. S. L. Dorozhukova, Extended Abstracts of Candidate’s Dissertation in Geology and Mineralogy (2004) [in Russian].

    Google Scholar 

  164. Review on State of Environment of the Khanty-Mansi Autonomous Area in 1999. Khanty-Mansiisk: State Committee on Environmental Protection of the Khanty-Mansi Autonomous Area (KhANTY, Khanty-Mansiisk, 1999).

  165. Ts. L. Vovk, “Distribution of vanadium, nickel, and chromium in sedimentary rocks of different age,” Tr. Nauchno-Issled. Inst. Geol. Arktiki 1, 101–105 (1959) [in Russian].

    Google Scholar 

  166. V. Ya. Khrenov, Soils of the Tyumen Region: A Handbook and Glossary (UrO RAN, Yekaterinburg, 2002) [in Russian].

    Google Scholar 

  167. L. N. Karetin, Soils of the Tyumen Region (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  168. A. P. Vinogradov, “Average content of chemical elements in major types of magmatic rocks,” Geokhimiya, 7, 65–571 (1962).

    Google Scholar 

  169. K. K. Turekian and K. H. Wedepohl, “Distribution of elements in some major units of the Earth’s crust,” Bull. Geol. Soc. Am. 72, 175–185 (1961).

    Google Scholar 

  170. A. I. Perel’man, Geochemistry of Natural Waters (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  171. A. V. Zhulidov, “Physicochemical and chemical state of metals in natural waters: toxicity for freshwater organisms,” in Ecological Standardization and Modeling of Anthropogenic Impact on Aquatic Ecosystems (Gidrometeoizdat, Leningrad, 1988), Vol. 1, pp. 78–82.

    Google Scholar 

  172. P. N. Linnik, B. I. Nabivanets, Species of Metal Migration in Fresh Surface Waters (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  173. T. I. Moiseenko, I. V. Rodyushkin, V. A. Dauvalter, et al., Influence of Anthropogenic Impacts on the Quality of Waters and Bottom Sediments under Conditions of Arctic Basins (Kol’sk. Nauch. Tsentr RAN, Apatity, 1996) [in Russian].

    Google Scholar 

  174. W. Stumm and H. Bilinski, “Trace metals in natural waters: difficulties of interpretation arising from our ignorance of their speciation,” in Advances in Water Pollution Research (Pergamon Press, New York, 1979), pp. 39–49.

    Google Scholar 

  175. P. L. Brezonik, S. O. King, and C. E. Mach, “The influence of water chemistry on trace metal bioavailability and toxicity to aquatic organisms,” in Metal Ecotoxicology: Concepts and Application, Ed. by M. C. Newman and A. W. McIntash (Lewis Publishers, Wisconsin, 1991), pp. 2–31.

    Google Scholar 

  176. F. K. Hartley, Berges Equilibria in Solutions (Academic Press, Berlin, 1983).

    Google Scholar 

  177. N. Paxeus and M. Wedborg, “Calcium binding in aquatic fulvic acid,” Anal. Chim. Acta 169, 87–93 (1985).

    Google Scholar 

  178. Yu. Yu. Lur’e, A Handbook on Analytical Chemistry (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  179. Yu. Yu. Lur’e, A Handbook on Analytical Chemistry (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  180. I. Ya. Koshcheeva, S. D. Khushvakhtova, V. V. Levinskii, et al., “Interaction of Cr(III) with the humus acids of soil, water, and bottom sediments,” Geochem. Int. 45(2), 208–215 (2007).

    Google Scholar 

  181. P. G. C. Campbell, “Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model,” in Metal Speciation and Bioavailability in Aquatic Systems, Ed. by A. Tessier and D. R. Turner, (John Wileys, Chichester, 1995), pp. 45–102.

    Google Scholar 

  182. J. C. McGeer, C. Szebedinszky, D. G. McDonald, and C. M. Wood, “The role of dissolved organic carbon in moderating the bioavailability and toxicity of Cu to rainbow trout during chronic waterborne exposure,” Comp. Biochem. Physiol. 133, 147–160 (2002).

    Google Scholar 

  183. T. A. Haines, V. T. Komov, V. E. Matey, et al., “Perch mercury content is related to acidity and color of 26 Russian lakes,” Water Air Pollut. 85, 823–828 (1995).

    Google Scholar 

  184. J. I. Drever, The Geochemistry of Natural Waters (Prentice-Hall, Englewood Cliffs, 1982).

    Google Scholar 

  185. L. Hollis, J. C. McGeer, D. G. McDonald, et al., “Protective effects of calcium against chronic waterborne cadmium exposure to juvenile rainbow trout,” Environ. Toxicol. Chem. 19, 2725–2734 (2000).

    Google Scholar 

  186. G. M. Varshal, I. Ya. Koshcheeva, I. S. Sirotkina, et al., “Study of organic matters in surface waters and their interaction with metal ions,” Geokhimiya, No. 4, 598–608 (1979).

    Google Scholar 

  187. I. A. Lapin and V. N. Krasyukov, “Role of humic matters in complexation and migration of heavy metals in surface waters,” Vodn. Resur., No. 1, 134–145 (1986).

    Google Scholar 

  188. J. C. McGeer, C. Szebedinsky, D. G. McDonald, et al., “Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation,” Aquat. Toxicol. 50, 245–256 (2000).

    Google Scholar 

  189. I. V. Rodyushkin, Candidate’s Disseration in Geology and Mineralogy (St. Petersburg, 1995) [in Russian].

    Google Scholar 

  190. T. A. O’Shea and K. H. Mancy, “The effect of pH and hardness metal ions on the competitive interactions between trace metal ions and inorganic and organic complexing agents found in natural waters,” Water Res. 9(12), 703–711 (1978).

    Google Scholar 

  191. R. F. C. Mantoura, A. Dickson, and J. P. Riley, “The complexation of metals with humic materials in natural waters,” Estuar. Coastal Mar. Sci. 6, 3887–408 (1978).

    Google Scholar 

  192. E. V. Venitsianov, A. G. Kocharyan, “Heavy metals in natural waters,” Vodn. Resur. 7, 299–326 (1994).

    Google Scholar 

  193. E. V. Venitsianov and Zh. N. Kudryashova, “Numerical model of spreading of heterophase components in river,” Vodn. Resur. 2, 80–91 (1980).

    Google Scholar 

  194. M. Schnitzer and S. U. Khan, “Reactions of humic substances with metal ions and hydrous oxides,” in Humic Substances in the Environment (Marcel Dekker, New York, 1972), pp. 203–251.

    Google Scholar 

  195. G. M. Varshal, Extended Abstracts of Doctoral Dissertation in Chemistry (Inst. Geochem. Analyt. Chem., Moscow, 1994) [in Russian].

    Google Scholar 

  196. M. I. Dinu, Effect of Functional Features of Humic Substances on Metal Speciation in Natural Waters (Tyum. Gos. Univ., Tyumen, 2012).

    Google Scholar 

  197. T. S. Papina, “Factors affection the heavy metal distribution over abiotic components of aquatic ecosystems of the Middle and Lower Ob,” Khim. Interesakh Ustoichiv. Razvitiya 7, 553–564 (1999).

    Google Scholar 

  198. V. M. Shul’kin, Heavy Metals in River and Coastal-Marine Ecosystems (Ivento, Vladivostok, 2007) [in Russian].

    Google Scholar 

  199. E. I. Tret’yakov and T. S. Papina, “Heavy metal distribution over components of basins of different salinity,” Khim. Interesakh Ustoichiv. Razvitiya 8, 429–438 (2000).

    Google Scholar 

  200. T. S. Papina, Transportation and Distribution of Heavy Metals in the Sequence Water-Particulate Matter-Bottom Sediments of River Ecosystems (GPNTB SO RAN-IVEP SO RAN, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  201. V. M. Shul’kin and N. N. Bogdanova, “Behavior of Zn, Cd, Pb, and Cu during the interaction between river-suspended matter and seawater,” Geochem. Int. 42 (8), 764–773 (2004).

    Google Scholar 

  202. E. Yu. Ershova, E. V. Venitsianov, A. G. Kocharyan, et al., “Heavy metals in the bed-load deposits of the Kuibyshev reservoir,” Water Resour. 1(23), 52–58 (1996).

    Google Scholar 

  203. D. M. Zhilin, “Study of reaction ability and detoxic properties of HC with respect to mercury compounds,” Vestn. Mosk. Gos. Univ., 15, 435–443 (1998).

    Google Scholar 

  204. E. I. Zubkov, “Heavy metals in bottom sediments of the Dniester and Dubossary water reservoir,” Gidrobiol. Zh. 4(32), 94–102 (1996).

    Google Scholar 

  205. S. R. Krainov and L. I. Matveeva, “Geochemical conditions of zinc and lead precipitation,” Geokhimiya, No. 12, 1708–1719 (1988).

    Google Scholar 

  206. N. E. Kosheleva, “Modeling of biogeochemical cycles of heavy metals in agrolandscapes using balance approach,” in Landscape Geochemistry and Soil Geography (Oikumena, Smolensk 2002), pp. 110–117.

    Google Scholar 

  207. P. Benes and E. Steinnes, “Migration forms of trace elements in natural fresh waters and the effect of the water storage,” Water Res. 8(9), 741–749 (1975).

    Google Scholar 

  208. T. Koljonen and L. Carlson, Behavior of the Major Elements and Minerals in Sediments of Four Humic Lakes in Southeastern Finland (Societas Geographica Fenniae, Helsinki, 1975).

    Google Scholar 

  209. D. M. McKnight and F. M. M. Morel, “Copper complexation by siderophores from filamentous blue-green algae,” Limnol. Oceanogr. 1(25), 62–71 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseenko, T.I., Gashkina, N.A., Dinu, M.I. et al. Aquatic geochemistry of small lakes: Effects of environment changes. Geochem. Int. 51, 1031–1148 (2013). https://doi.org/10.1134/S0016702913130028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913130028

Keywords

Navigation