Skip to main content
Log in

Experimental modeling of the origin of the Moon’s metallic core at partial melting

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Geochemical criteria of the Moon’s composition as deficient in Fe and depleted in volatile components and the distribution of siderophile elements in the planet offer the possibility of correlating, under certain conditions, the origin of the Moon and its core from an initial material of composition close to CI carbonaceous chondrites. In order to verify the model of the percolation of liquid metallic Fe through a silicate matrix of chondritic composition at low degrees of melting, we have experimentally modeled Fe movement and deposition in the course of high-temperature centrifugation. The starting experimental mixture had the composition 85% Ol, 10% ferropicrite, and 5% Fe-S (95% Fe and 5% S); the experimental conditions were 4000 g “gravity”, T = 1440°C, Δ log fO2(IW) ∼ −5.5. In our experiments, Fe was segregated in systems with Fe sulfide and silicate melts at partial melting under reduced conditions and the deformation of the silicate framework. Our results indicate that the Moon could be produced from a material of composition close to CI carbonaceous chondrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Galimov, “On the Origin of Lunar Material,” Geochem. Int., Vol. 42, No. 7, 595–610 (2004).

  2. W. K. Hurtman and D. R. Davis, “Satellite-Sized Planetesimals and Lunar Origin,” Icarus 24, 504–515 (1975).

    Article  Google Scholar 

  3. A. G. W. Cameron and W. Ward, “The Origin of the Moon,” Sci. Proc. Lunar. Conf. 7, 120–122 (1976).

    Google Scholar 

  4. E. M. Galimov, “Problem of the Origin of the Moon,” in The Main Trends in Geochemistry. To the 100th Anniversary of A.P. Vinogradov, Ed. by E. M. Galimov (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  5. O. L. Kuskov, V. A. Dorofeeva, V. A. Kronrod, and A. B. Makalkin, “Systems of Jupiter and Saturn: Formation, Composition, and Internal Structure of Large Satellites,” (LKI, 2008) [in Russian].

  6. O. L. Kuskov and V. A. Kronrod, “Geochemical Constraints on the Model of the Composition and Thermal Conditions of the Moon According to Seismic Data,” Izv. Phys. Solid Earth 45(9), (2009).

  7. H. E. Newsom and S. K. Runcorn, “New Constraints of the Size of the Lunar Core and the Origin of the Moon,” Lunar Planet. Sci. Conf. 22, 973–974 (1991).

    Google Scholar 

  8. E. B. Lebedev, A. A. Kadik, and E. M. Galimov, “Segregation of Molten Metal through Partially Molten Silicate: Simulation Using a High Temperature Centrifuge,” in Proc. 32 nd IGC, Florence, 2004. T06.02 Geochemical Environment of the Genesis of Life (Florence, 2004).

  9. C. Ballhaus and D. J. Ellis, “Mobility of Core Melts during Earth’s Accretion,” Earth Planet. Sci. Lett. 143 P, 137–145 (1996).

    Article  Google Scholar 

  10. M. C. Shannon and C. B. Agee, “Percolation of Core Melts at Lower Mantle Conditions,” Science 280, 1059–1061 (1998).

    Article  Google Scholar 

  11. E. B. Lebedev and A. A. Kadik, “Movement of Sulfide Phases in the Partially Molten Zones: Experimental Modeling of the Formation of Planetary Cores in Centrifugal Fields),” in Physical Properties of Rocks at High Pressures (IFZ RAN, Moscow, 2000), pp. 43–44 [in Russian].

    Google Scholar 

  12. J. J. Roberts, J. H. Kinney, J. Siebert, and F. J. Ryerson, “Fe-Ni-S Melt Permeability in Olivine: Implication for Planetary Core Formation,” Geophys. Rev. Lett. 34, L14306 (2007). doi:10.1029/2007GL030497.

    Article  Google Scholar 

  13. E. B. Lebedev, A. A. Kadik, O. L. Kuskov, A. M. Dorfman, O. A. Lukanin, “The Motion of Sulfide Phases in a Partially Molten Silicate Material: Application to the Problem of the Formation of Planetary Cores,” Solar Syst. Res. 33(5), 346–355 (1999).

    Google Scholar 

  14. N. Bagdassarov, G. Solferino, G. J. Golabek, and M. W. Schmidt, “Centrifuge Assisted Percolation of Fe-S Melts in Partially Molten Peridotite: Time Constraints for Planetary Core Formation,” Earth Planet. Sci. Lett. 288, 84–95 (2009).

    Article  Google Scholar 

  15. Y. T. Wasson and G. W. Callemegu, “Composition of Chondrites,” Phil. Trans. R. Soc. London, A328, 525–544 (1988).

    Google Scholar 

  16. G. J. Taylor, “Core Formation in Asteroids,” J. Geophys. Res., 97(E9), 14717–14726 (1992).

    Article  Google Scholar 

  17. S. Jurewicz and J. H. Jones, Experimental Segregation of Iron-Nickel Metal, Iron-Sulfide, and Olivine in a Thermal Gradient: Preliminary Results, Lunar Planet. Sci. Conf., 24(2), 743–744 (1993).

    Google Scholar 

  18. T. Rushmer, “An Experimental Deformation Study of Partially Molten Amphibolite: Application to Low-Melt Fraction Segregation,” J. Geophys. Res. 100(B8), 15.681–15.695 (1995).

    Article  Google Scholar 

  19. J. W. Hustoft and D. L. Kohlstedt, “Metal-Silicate Segregation in Deforming Dunitic Rocks,” Geochem. Geophys. Geosyst. 7(2) (2006).

  20. E. M. Galimov, “Seismic Factor of the Oil Migration and Accumulation,” in Carbon Isotopes in the Petroleum Geology (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  21. A. Holzheid, M. D. Schmitz, and T. L. Grove, “Textural Equilibria of Iron Sulfide Liquids in Partly Molten Silicate Aggregates and Their Relevance to Core Formation Scenarios,” J. Geophys. Res 105(B6), 13555–13567 (2000).

    Article  Google Scholar 

  22. U. Mann, D. J. Frost, and D. C. Rubie, “The Effect of Si on Dihedral Angles between Metallic Fe-Rich Liquids and Forsterite and Magnesium Silicate Perovskite,” Geophys. Res. Abstr. 7, 06674 (2005).

    Google Scholar 

  23. G. Morard and T. Katsura, “Pressure-Temperature Cartography of Fe-S-Si Immiscible System,” Geochim. Cosmochim. Acta 74(12), 3659–3667 (2010).

    Article  Google Scholar 

  24. V. Raghavan, “Phase Diagrams of Ternary Iron Alloys. Part 2: Ternary Systems Containing Iron and Sulphur,” Ind. Inst. Met. Calcuta, 270–278 (1988).

  25. N. L. Chabot and M. J. Drake, “Potassium Solubility in Metal: The Effects of Composition at 15 Kbar and 1900°C on Partitioning between Iron Alloys and Silicate Melts,” Earth Planet. Sci. Lett., 172, 323–335 (1999).

    Article  Google Scholar 

  26. D. Jana and D. Walker, “The Influence of Sulfur on Partitioning of Siderophile Elements,” Geochim. Cosmochim. Acta 61(24), 5255–5277 (1996).

    Article  Google Scholar 

  27. D. Rubie, H. Melosh, J. Reid, C. Liebske, K. Righter, “Mechanisms of Metal-Silicate Equilibration in the Terrestrial Magma Ocean,” Earth Planet. Sci. Lett., No. 205, 239–255 (2003).

    Google Scholar 

  28. N. P. Walte, J. K. Becker, P. O. Bons, D. C. Rubie, D. J. Frost, “Liquid-Distribution and Attainment of Textural Equilibrium in a Partially-Molten Crystalline System with a High-Dihedral-Angle Liquid Phase,” Earth Planet. Sci. Lett. 262, 517–532 (2007).

    Article  Google Scholar 

  29. J. -P. Poirier, “Light Elements in the Earth’s Outer Core: A Critical Review,” Phys. Earth Planet. Int. 85, 319–337 (1994).

    Article  Google Scholar 

  30. D. McKenzie, “The Generation and Compaction of Partially Molten Rock,” J. Petrol. 25, 713–765 (1984).

    Google Scholar 

  31. S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  32. T. Yoshino, M. J. Walter, and T. Katsura, “Connectivity of Molten Fe Alloy in Peridotite Based on in Situ Electrical Conductivity Measurements: Implications for Core Formation in Terrestrial Planets,” Earth Planet. Sci. Lett. 222, 625–643 (2004).

    Article  Google Scholar 

  33. T. Hoink, J. Schmalzl, and U. Hansen, “Dynamics of Metal-Silicate Separation in a Terrestrial Magma Ocean,” Geochem., Geophys., Geosyst. 7(9) (2006).

  34. D. Alfe and M. J. Gillan, “First-Principles Simulations of Liquid Fe-S under Earth’s Core Conditions,” Phys. Rev. 58, 8248–8256 (1998).

    Article  Google Scholar 

  35. O. I. Yakovlev, Yu. P. Dikov, M. V. Gerasimov, F. Vlotska, I. Khut, “Experimental Investigation of Factors Controlling the Composition of Glasses from the Lunar Regolith,” Geochem. Int., 43(5), 417–430 (2003).

    Google Scholar 

  36. L. Wager and G. Brown, Layered Igneous Rocks (Freeman, San Francisco, 1967).

    Google Scholar 

  37. P. N. Chirvinskii, Pallasites (Nedra, Moscow, 1967) [in Russian].

    Google Scholar 

  38. H. Terasaki, T. Kato, S. Urakawa, K. Funakoshi, A. Suzuki, T. Okada, M. Maeda, J. Sato, T. Kubo, and S. Kasai, “The Effect of Temperature, Pressure, and Sulfur Content on Viscosity of the Fe-FeS Melt,” Earth Planet. Sci. Lett. 190, 93–102 (2001).

    Article  Google Scholar 

  39. H. Terasaki, D. J. Frost, D. C. Rubie, and F. Langenhorst, “Percolative Core Formation in Planetesimals,” Earth Planet. Sci. Lett. (2008). doi:10.1016/j.epsl.2008.06.019.

  40. A. A. Kadik, E. B. Lebedev, A. M. Dorfman, and N. Sh. Bagdasarov, “Modeling the High-Temperature Centrifuge Separation of Magmatic Melts from Crystals,” Geokhimiya, No. 1, 43–54 (1989).

  41. D. Bruhn, N. Groebner, and D. L. Kohlstedt, “An Interconnected Network of Core-Forming Melts Produced by Shear Deformation,” Nature, 403, 883–886 (2000).

    Article  Google Scholar 

  42. G. Hirth and D. L. Kohlstedt, “1. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle 2. Deformation in the Dislocation Creep Regime,” J. Geophys. Res. 100(B8), 15441–15449 (1995).

    Article  Google Scholar 

  43. E. H. Rutter and D. H. K. Neumann, “Experimental Deformation of Partially Molten Westerly Granite under Fluid-Absent Conditions, with Implications for the Extraction of Granitic Magmas,” J. Geophys. Res. 100 (B8), 15697–15715 (1995).

    Google Scholar 

  44. A. A. Borisov, E. V. Zharkova, A. A. Kadik, I. F. Kravchuk, O. A. Lukanin, S. D. Malinin, S. N. Shilobreeva, Fluids and Redox Equilibria in the Magmatic Systems (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  45. M. J. Drake, H. E. Newsom, and C. J. Capobianco, “V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the Origin of the Moon: Experimental Studies,” Geochim. Cosmochim. Acta 53, 2101–2111 (1989).

    Article  Google Scholar 

  46. H. S. C. O’ Neill and M. I. Pownceby, “Thermodynamic Data from Redox Reactions at High Temperatures: I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-”FeO”, Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for the W-WO2 Buffer,” Contrib. Mineral. Petrol. 114, 296–314 (1993).

    Article  Google Scholar 

  47. A. A. Ariskin, A. A. Borisov, and G. S. Barmina, “Modeling the Iron-Silicate Melt Equilibria in the Basaltic Systems,” Geokhimiya, No. 9, 1231–1240 (1992).

  48. I. Sato, “Oxygen Fugacity and Other Thermochemical Parameters of Apollo 17 High-Ti Basalts and Their Implications on the Reduction Mechanism,” Proc. Lunar Sci. Conf. 7, 1323–1344 (1976).

    Google Scholar 

  49. N. I. Bezmen, “Superliquidus Differentiation of Fluid-Bearing Magmatic Melts under Reducing Conditions as a Possible Mechanism of Formation of Layered Massifs: Experimental Investigations,” Petrology 9(4), 345–361 (2001).

    Google Scholar 

  50. C. B. Agee, N. M. Mills, and D. S. Draper, “Alkali Metals in the Core? Experimental Constraints on Magma Ocean Partitioning of C, S, K, and Na,” in Early Planetary Differentiation (Sonoma County, 2006), pp. 7–8. LPI Contribution, No. 1335.

  51. W. Rammensee, H. Palme, and H. Wanke, “Experimental Investigation of Metal-Silicate Portioning of Some Lithophile Elements (Ta, Mn, V, Cr),” Proc. Lunar Planet. Sci. Conf. 14, 628–629 (1983).

    Google Scholar 

  52. H. S. C. O’ Neill and S. M. Eggins, “The Effect of Melt Composition on Trace Element Partitioning: An Experimental Investigation of the Activity Coefficients of FeO, NiO, CoO, MoO2, and MoO3 in Silicate Melts,” Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  53. I. D. Ryabchikov, “Redox Equilibria in the Upper Mantle,” Dokl. Akad. Nauk SSSR 268(3), 703–706 (1983).

    Google Scholar 

  54. F. V. Kaminskii, Mineralogy and Geochemistry of the Earth’s Lower Mantle, in 50th V.I. Vernadsky Scientific Reading (Moscow, 2010) [in Russian].

  55. V. V. Averin, “Thermodynamic Modeling,” in Principles of Prediction of Optimal Processes in Chemical Technology. Reports on the All-Russian Conference on the Problems of Mathematics, Informatics, Physics, and Chemistry, Moscow, Russia, 2009 (RUDN, Moscow, 2009), p. 169.

    Google Scholar 

  56. H. Ramberg, Gravity, Deformation, and the Earth’s Crust as Studied by Centrifuge Models (Academic Press, New York, 1967).

    Google Scholar 

  57. G. I. Pokrovskii and I. O. Fedorov, Centrifugal Models for Solving Engineering Problems (Gos. Izd. Lit. po Storoitel’stvu i Arkhitekture, Moscow), Part 1953 [in Russian].

  58. A. A. Kadik and E. B. Lebedev, “Differentiation of Partially Molten Zones of the Moon under Conditions of Multiphase Flow of Deep-Seated Material: A High-Temperature Centrifuge Simulation,” Solar Syst. Res. 33(5), 392–399 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Lebedev.

Additional information

Original Russian Text © E.B. Lebedev, E.M. Galimov, 2012, published in Geokhimiya, 2012, Vol. 50, No. 8, pp. 715–725.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, E.B., Galimov, E.M. Experimental modeling of the origin of the Moon’s metallic core at partial melting. Geochem. Int. 50, 639–648 (2012). https://doi.org/10.1134/S0016702912080046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912080046

Keywords

Navigation