Skip to main content
Log in

Effect of redox conditions on iron metal phase segregation during experimental high-temperature centrifuge modeling of the origin of the Moon’s core

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The possible origin of the Moon’s metallic core at the precipitation of iron–sulfide phases during the partial melting of ultramafic material under various redox conditions was experimentally modeled by partially melting the model system olivine (85 wt %) + ferrobasalt (10 wt %) + metallic phase Fe95S5 (wt %) in a high-temperature centrifuge at 1430–1450°C. The oxygen fugacity fO2 was determined from the composition of the quenched experimental silicate melts (glasses). A decrease in fO2 is proved to be favorable for the segregation of iron–sulfide melt from the silicate matrix. The metallic phase is most effectively segregated in the form of melt droplets, and these droplets are accumulated in the lower portions of the samples under strongly reduced conditions, at fO2 ∼ 4.5–5.5 orders of magnitude lower than the iron–wüstite buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. B. Agee, N. M. Mills, D. S. Draper, Workshop on Early Planetary Differentiation. Alkali metals in the Core? Experimental Constraints on Magma Ocean Partitioning of Cs, K, and Na (Astromaterials Institute, University of New Mexico, Albuquerque, 2006).

    Google Scholar 

  • D. Alfe and M. J. Gillan, “First-principles simulations of liquid Fe-S under Earth’s core conditions,” Phys. Rev. B 58, 8248–8256 (1998).

    Article  Google Scholar 

  • A. A. Ariskin, A. A. Borisov, and G. S. Barmina, “Modeling of iron–silicate melt equilibrium in basaltic systems,” Geokhimiya, No. 9, 1231–1240 (1992).

    Google Scholar 

  • Averin V. V. and Yakovlev, O. I. “Thermodynamic modeling of lunar basalt evaporation,” in Proceedings of 11th International Conference of Physicochemical and Petrographic Studies in the Earth’s Science (GEOKhI, Moscow, 2010), pp. 11–14 [in Russian].

    Google Scholar 

  • V. V. Averin, V. A. Reznichenko, and B. G. Trusov, “Thermodynamic modeling of titanium oxide chllrination,” Tekhnol. Met., No. 8, 45–48 (2008).

    Google Scholar 

  • N. Bagdassarov, G. Solferino, G. J. Golabek, and M. W. Schmidt, “Centrifuge assisted percolation of Fe–S melts in partially molten peridotite: Time constraints for planetary core formation,” Earth Planet. Sci. Lett. 288, 84–95 (2009).

    Article  Google Scholar 

  • C. Ballhaus and D. J. Ellis, “Mobility of core melts during Earth’s accretion,” Earth Planet. Sci. Lett. 143, 137–145 (1996).

    Article  Google Scholar 

  • N. I. Bezmen, “Superliquidus differentiation of fluid-bearing magmatic melts under reducing conditions as a possible mechanism of formation of layered massifs: experimental investigations,” Petrology 9 (4), 345–361 (2001).

    Google Scholar 

  • D. Bruhn, N. Groebner, and D. L. Kohlstedt, “An interconnected network of core-forming melts produced by shear deformation,” Nature 403, 883–886 (2000).

    Article  Google Scholar 

  • N. L. Chabot and C. B. Agee, “Core formation in the Earth and Moon: new experimental constraints from V, Cr, and Mn,” Geochim. Cosmochim. Acta 67 (11), 2077–2091 (2003).

    Article  Google Scholar 

  • N. L. Chabot and M. J. Drake, “Potassium solubility in metal: the effects of composition at 15 kbar and 1900°C on partitioning between iron alloys and silicate melts,” Earth Planet Sci. Lett. 172, 323–335 (1999).

    Article  Google Scholar 

  • M. J. Drake, H. E. Newsom, and C. J. Capobianco, “V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: experimental studies,” Geochim. Cosmochim. Acta 53, 2101–2111 (1989).

    Article  Google Scholar 

  • W. M. Elsasser, “Early history of the Earth,” in Earth Science and Meteorites, Ed. by J. Geiss and E. Goldberg (Amsterdam, 1963), pp. 1–30.

    Google Scholar 

  • G. A. Gaetani and T. L. Grove, “Wetting of mantle olivine by sulfide melt: implications for Re/Os–ratios in mantle peridotite and late-stage core formation,” Earth Planet. Sci. Lett. 169, 147–163 (1999).

    Article  Google Scholar 

  • E. M. Galimov and A. M. Krivtsov, Origin of the Moon. New Concept. Geochemistry and Dynamics (De Gruyter & Co. KG, Berlin–Boston, 2013).

    Google Scholar 

  • E. M. Galimov, “On the origin of lunar material,” Geochem. Int. 42 (7), 595–609 (2004).

    Google Scholar 

  • E. M. Galimov, “Problem of the Moon origin,” in Main Directions in Geochemistry. On 100th A.P. Vinogradov Anniversary, Ed. by E.M. Galimov (Nauka, Moscow, 1995), pp. 8–43 [in Russian].

    Google Scholar 

  • C. K. Gessmann, D. C. Rubie, and C. A. McCammon, “Oxygen fugacity dependence of Ni, Co, Mn, Cr, V, and Si partitioning between liquid metal and magnesiowiistite at 9–18 GPa and 2200°C,” Geochim. Cosmochim. Acta 63 (11–12), 1853–1863 (1999).

    Article  Google Scholar 

  • G. Hirth and D. L. Kohlstedt, “1. Experimental constraints on the dynamics of the partially molten upper mantle 2. Deformation in the dislocation creep regime,” J. Geophys. Res. 100 (B8), 15441–15449 (1995).

    Article  Google Scholar 

  • T. Hoink, J. Schmalzl, and U. Hansen “Dynamics of metal-silicate separation in a terrestrial magma ocean,” Geochem., Geophys., Geosyst. 7 (9), (2006).

    Google Scholar 

  • A. Holzheid, M. D. Schmitz, and T. L. Grove “Textural equilibria of iron sulfide liquids in partly molten silicate aggregates and their relevance to core formation scenarios,” J. Geophys. Res. 105 (B6), 13555–13567 (2000).

    Article  Google Scholar 

  • J. W. Hustoft and D. L. Kohlstedt, “Metal-silicate segregation in deforming dunitic rocks,” Geochem., Geophys., Geosyst. 7 (2) (2006).

    Google Scholar 

  • D. Jana and D. Walker, “The influence of sulfur on partitioning of siderophile elements,” Geochim. Cosmochim. Acta. 61 (24), 5255–5277 (1996).

    Article  Google Scholar 

  • A. A. Kadik and E. B. Lebedev, “Differentiation of partially molten zones of the Moon under conditions of multiphase flow of deep-seated material: a high-temperature centrifuge simulation,” Solar Syst. Res. 33 (5), 392–399 (1999).

    Google Scholar 

  • A. A. Kadik, E. B. Lebedev, A. M. Dorfman, and N. Sh. Bagdasarov, “Modeling of separation of magmatic melts from crystals using high-temperature centrifuge,” Geokhimiya 1, 43–54 (1989).

    Google Scholar 

  • A. A. Kadik, Y. A. Litvin, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solution behavior of reduced N–H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature,” Phys. Earth Planet. Inter. 214, 14–24 (2013).

    Article  Google Scholar 

  • A. A. Kadik, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–Al2O3–SiO2 melt and liquid iron alloy: influence of oxygen fugacity,” Geochem. Int. 53 (10), 849–868 (2015).

    Article  Google Scholar 

  • O. L. Kuskov and V. A. Kronrod, “Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data,” Izv., Phys. Solid Earth 45 (9), 753–768 (2009).

    Article  Google Scholar 

  • O. L. Kuskov, V. A. Dorofeeva, V. A. Kronrod, and A. B. Makalkin, Systems of Jupiter and Saturn. Formation, Composition and Inner Structure of Large Satellites (Moscow, LKI, 2008) [in Russian].

    Google Scholar 

  • E. B. Lebedev and A. A. Kadik, “High-temperature centrifuge,” RF Patent no. 2082786, Byull. Isobret. No. 18, (1997)

  • Lebedev E. B. and Galimov, E. M. “Experimental modeling of the origin of the Moon’s metallic core at partial melting,” Geochem. Int. 50 (8), 639–648 (2012).

    Article  Google Scholar 

  • E. B. Lebedev and E. M. Galimov, “Physicochemical conditions of experimental modeling of the formation of the Moon’s metallic core at partial melting,” in Problems of Origin and Evolution of Biosphere, Ed. by E. M. Galimov, (KRAS AND, Moscow, 2013), pp. 183–193 [in Russian].

    Google Scholar 

  • E. B. Lebedev, A. A. Kadik, O. L. Kuskov, A. M. Dorfman, and O. A. Lukanin “The motion of sulfide phases in a partially molten silicate material: application to the problem of the formation of planetary cores,” Solar Syst. Res. 33 (5) 346–355 (1999).

    Google Scholar 

  • U. Mann, D. J. Frost, and D. C. Rubie, “The effect of Si on dihedral angles between metallic Fe-rich liquids and forsterite and magnesium silicate perovskite,” Geophys. Res. Abstr. 7, 06674 (2005). SRef-ID: 1607-7962/gra/EGU05-A-06674.

    Google Scholar 

  • N. M. Mills, C. B. Agee, and D. S. Draper, “Metal–silicate partitioning of cesium: implications for core formation,” Geochim. Cosmochim. Acta. 71, 4066–408 (2007).

    Article  Google Scholar 

  • W. G. Minarik, F. J. Ryerson, and E. B. Watson, “Textural entrapment of core-forming melts,” Science 272. 530–532 (1996).

    Article  Google Scholar 

  • G. Morard and T. Katsura, “Pressure-temperature cartography of Fe–S–Si immiscible system,” Geochim. Cosmochim. Acta 74 (12), 3659–3667 (2010).

    Article  Google Scholar 

  • H. S. C. O’Neill and M. I. Pownceby, “Thermodynamic data from redox reactions at high temperatures: I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–FeO, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W–WO2 buffer,” Contrib. Mineral. Petrol. 114, 296–314 (1993).

    Article  Google Scholar 

  • H. S. C. O’Neill and V. J. Wall, “The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugaclty of the Earth’s upper mantle,” J. Petrol. 8 (6), 1169–1191 (1987).

    Article  Google Scholar 

  • J-P. Poirier, “Light elements in the Earth’s outer core: a critical review,” Phys. Earth Planet. Int. 85, 319–337 (1994).

    Article  Google Scholar 

  • S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  • V. Raghavan, Phase Diagrams of Ternary Iron Alloys. Part 2: Ternary Systems Containing Iron and Sulphur (Indian Institute of Metals, Calcuta, 1988), pp. 270–278.

    Google Scholar 

  • W. Rammensee, H. Palme, and H. Wanke, “Experimental investigation of metal-silicate partitioning of some lithophile elements (Ta, Mn, V, Cr),” Lunar Planet. Sci. Conf. 14, 628–629 (1983).

    Google Scholar 

  • A. E. Ringwood, Origin of the Earth and Moon (Springer, New York, 1979).

    Book  Google Scholar 

  • J. J. Roberts, J. H. Kinney, J. Siebert, and F. J. Ryerson, “Fe–Ni–S melt permeability in olivine: implication for planetary core formation,” Geophys. Res. Lett. 34, L14306 (2007). doi: doi 10.1029/2007GL030497

    Article  Google Scholar 

  • D. Rubie, H. Melosh, J. Reid, C. Liebske, and K. Righter, “Mechanisms of metal-silicate equilibration in the terrestrial magma ocean,” Earth Planet. Sci. Lett. 205, 239–255 (2003).

    Article  Google Scholar 

  • S. K. Runcorn, “The formation of the lunar core,” Geochim. Cosmochim. Acta. 60, 1205–1208 (1996).

    Article  Google Scholar 

  • T. Rushmer, et al. “Fe-liquid segregationin deforming planetosimals: Coupling core-forming compositions with transport phenomena,” Earth Planet. Sci. Lett. 239, 185–202 (2005).

    Article  Google Scholar 

  • E. H. Rutter and D. H. K. Neumann, “Experimental deformation of partially molten Westerly granite under fluidabsent conditions, with implications for the extraction of granitic magmas,” J. Geophys. Res. 100 (B8), 15697–15715 (1995).

    Article  Google Scholar 

  • M. C. Shannon and C. B. Agee, “Percolation of core melts at lower mantle conditions,” Science 280, 1059–1061 (1998).

    Article  Google Scholar 

  • D. J. Stevenson, “Fluid dynamics of core formation,” in Origin of the Earth, Ed. by H. E. Newsom and H. J. Jones (Oxford Univ. Press, New York, 1990), pp. 231–249.

    Google Scholar 

  • B. G. Trusov, “Software an Data on the thermodynamic calculations of thermochemical processes,” in 13th International Conference on Physicochemical and Petrophysical Studies in the Earth’s Science, Moscow, Russia, 2012 (Moscow, 2002), pp. 262–265 [in Russian].

    Google Scholar 

  • B. G. Trusov, “Thermodynamic Terra software,” in Proceedings of 3rd Symposium on Theoretical and Applied Chemistry, Ivanova, Russia, 2002 (Ivanovo, 2002), pp. 217–220 [in Russian].

    Google Scholar 

  • A. P. Vinogradov, “Differentiation of the lunar and planetary material into shells,” in Cosmochemistry of the Moon and Planets, Ed. by A. P. Vinogradov, (Nauka, Moscow, 1975), pp. 5–28.

    Google Scholar 

  • N. P. Walte, J. K. Becker, P. O. Bons, D. C. Rubie, and D. J. Frost, “Liquid-distribution and attainment of textural equilibrium in a partially-molten crystalline system with a high-dihedral-angle liquid phase,” Earth Planet. Sci. Lett. 262, 517–532 (2007).

    Article  Google Scholar 

  • T. Yoshino, M. J. Walter, and T. Katsura “Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets,” Earth Planet. Sci. Lett. 222, 625–643 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Lebedev.

Additional information

Original Russian Text © E.B. Lebedev, V.V. Averin, O.A. Lukanin, I.A. Roshchina, N.N. Kononkova, E.A. Zevakin, 2016, published in Geokhimiya, 2016, No. 7, pp. 623–632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, E.B., Averin, V.V., Lukanin, O.A. et al. Effect of redox conditions on iron metal phase segregation during experimental high-temperature centrifuge modeling of the origin of the Moon’s core. Geochem. Int. 54, 609–617 (2016). https://doi.org/10.1134/S0016702916070053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916070053

Keywords

Navigation