Skip to main content
Log in

Physicochemical crystallization conditions of Al-F sphene in metasomatic rocks with ore mineralization at the Berezitovoe Deposit

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Al-F sphene (grothite) was found in mineralized rocks at the Berezitovoe Deposit in the Russian Far East. The paper is devoted to the mineral assemblages and composition of the mineral and its thermodynamic crystallization conditions. The average Al and F concentrations (p.f.u., microprobe data) in the grothite are 0.45 and 0.42 in sample 1374, 0.32 and 0.32 in sample 1306, and 0.35 and 0.33 in sample 96. Grothite was found in the rocks in association with chlorite, ilmenite (pyrophanite), and magnetite, and this mineral assemblage was obviously overprinted on the primary garnet-biotite assemblages. We estimated the temperature of grothite crystallization at 400–500°C. With regard for available experimental data on the mineral equilibrium between Al-F sphene, fluid, and anorthite, a tool is proposed for evaluating F concentrations in fluids by the equilibrium of Al-F sphene with plagioclase, rutile, and F-bearing aqueous fluid. Our model simulations indicate that the maximum F concentration in fluid during the crystallization of Al-F sphene richest in F at the temperatures and pressures of metasomatic rocks at the Berezitovoe deposit could reach 300–500 mg per kg of the aqueous solution. The level of F concentration in the fluid during the crystallization of Al-F sphene at the deposit is comparable with the F concentration in fluid during the development of greisens and rare-metal pegmatites, but these high F concentrations were reached only during the final evolutionary stages of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Oberti, D. C. Smith, G. Rossi, and F. Caucia, “The Crystal-Chemistry of High-Aluminium Titanites,” Eur. J. Mineral 3, 777–792 (1991).

    Google Scholar 

  2. M. Enami, K. Susuki, J. G. Liou, and D. K. Bird, “Al-Fe3+ and F-OH Substitutions in Titanite and Constrains on Their P-T Dependence,” Eur. J. Mineral. 5, 219–231 (1993).

    Google Scholar 

  3. D. Harlov, P. Tropper, W. Seifert, T. Nijland, H. J. Förster, “Formation of Al-Rich Titanite (CaTiSiO4O-CaAlSiO4(OH) Reaction Rims on Ilmenite in Metamorphic Rocks as a Function of fH2O and fO2,” Lithos 88, 72–84 (2006).

    Article  Google Scholar 

  4. P. Tropper and C. E. Manning, “The Current Status of Titanite-Rutile Thermobarometry in Ultrahigh-Pressure Metamorphic Rocks: The Influence of Titanite Activity Models on Phase Equilibrium Calculations,” Chem. Geol. 254, 123–132 (2008).

    Article  Google Scholar 

  5. R. V. Gaines et al., Dana’s New Mineralogy: The System of Mineralogy of J. D. Dana and E. S. Dana, (John Willey, New York, 1997).

    Google Scholar 

  6. U. Troitzsch and D. J. Ellis, “Thermodynamic Properties and Stability of AlF-Bearing Titanite CaTiOSiO4-CaAlFSiO4,” Contrib. Mineral. Petrol. 142(5), 543–563 (2002).

    Article  Google Scholar 

  7. P. Tropper, C. E. Manning, and E. J. Essene, “The Substitution of Al and F in Titanite at High Pressure and Temperature: Experimental Constraints on Phase Relations and Solid Solution Properties,” J. Petrol. 43(10), 1787–1814 (2002).

    Article  Google Scholar 

  8. H. Sarp, J. Bertrand, and E. M. Near, “Vuagnatite, CaAl(OH)SiO4, a New Natural Calcium Aluminum Nesosilicate,” Am. Mineral. 61, 825–830 (1976).

    Google Scholar 

  9. G. Franz and F. Spear, “Aluminous Titanite (Sphene) from the Eclogite-Zone South-Central Tauern Window Austria,” Chem. Geol. 50(1/3), 33–46 (1985).

    Article  Google Scholar 

  10. N. V. Sobolev and V. S. Shatsky, “Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation,” Nature 343, 742–746 (1990).

    Article  Google Scholar 

  11. G. Markl and S. Piazolo, “Stability of High-Al Titanite from Low-Pressure Calcsilicates in Light of Fluid and Host-Rock Composition,” Am. Mineral. 84, 37–47 (1999).

    Google Scholar 

  12. E. V. Perevoznikova and N. V. Miroshnichenko, “Tausonite and Aluminum-Fluorine Titanite from the Metamorphosed Metalliferous Sediments of the Triassic Chert Formation of the Sikhote Alin,” Russ. J. Pac. Geol. 3(3), 294–297 (2009).

    Article  Google Scholar 

  13. A. S. Vakh, O. V. Avchenko, A. A. Karabtsov, and V. A. Stepanov, “The First Finds of Grothite in Gold Ore Deposits,” Dokl. Earth Sci. 428, 1083–1087 (2009).

    Article  Google Scholar 

  14. V. A. Stepanov, A. V. Mel’nikov, A. S. Vakh, et al., Amur Gold Province (AmGU-NIGTTs DVO RAN, Blagoveshchensk, 2008) [in Russian].

    Google Scholar 

  15. Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), p. 572 [in Russian].

    Google Scholar 

  16. V. E. Strikha, N. N. Petruk, K. D. Vakhtomin, et al., “Geology of the Khaikta Intrusive Complex (Upper Amur Region),” Tikhookeanskaya Geol, No. 5, 25–37 (2000).

  17. A. S. Vakh, V. A. Stepanov, and O. V. Avchenko, “Beresite Gold-Base Metal Deposit: Geological Structure and Ore Composition,” Rudy Met., No. 6, 44–55 (2008).

  18. D. Castelli and D. Rubatto, “Stability of Al- and F-Rich Titanite in Metacarbonate: Petrologic and Isotopic Constraints from a Polymetamorphic Eclogitic Marble of the Internal Sesia Zone (Western Alps),” Contrib. Mineral. Petrol. 142(6), 627–639 (2002).

    Article  Google Scholar 

  19. O. V. Avchenko, A. S. Vakh, V. G. Sakhno, V. A. Stepanov, E. A. Nozdrachev, and O. I. Sharova, “Local Metamorphism of Ore-Metasomatic Rocks of the Berezit Deposit,” Dokl. Earth Sci. 432(1), 553–559 (2010).

    Article  Google Scholar 

  20. L. L. Perchuk, “Magmatism, Metamorphism, and Geodynamics” (“Nauka”, Moscow, 1993) [in Russian].

    Google Scholar 

  21. R. G. Berman, “Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2,” J. Petrol. 29, 445–522 (1988).

    Google Scholar 

  22. R. A. Robie and B. S. Hemingway, “Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures,” U.S. Geol. Surv. Bull. 2131, 1995).

  23. H. Yokokawa, “Tables of Thermodynamic Properties of Inorganic Compounds,” J. Nat. Chem. Lab. Industry 83, 27–121 (1988).

    Google Scholar 

  24. S. N. Vaidya, S. Bailey, T. Pasternack, and G. C. Kennedy, “Compressibility of Fifteen Minerals to 45 Kbars,” J. Geophys. Res. 78, 6893–6898 (1973).

    Article  Google Scholar 

  25. T. J. B. Holland and R. Powell, “Plagioclase Feldspars: Activity-Composition Relations Based Upon Darken’s Quadratic Formalism and Landau Theory,” Am. Mineral. 77, 53–61 (1992).

    Google Scholar 

  26. A. M. Aksyuk, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy (Moscow, 2009) [in Russian].

  27. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, “The Properties of Gases and Liquids,” (McGraw-Hill, New York, 1977).

    Google Scholar 

  28. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16(3), 309–343 (1998).

    Article  Google Scholar 

  29. J. J. More, “The Levenberg-Marquardt Algorithm: Implementation and Theory,” in “Lecture Notes in Mathematics,” Ed. by G. A. Watson, (Springer-Verlag, Berlin, 1977), vol. 630, pp. 105–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Avchenko.

Additional information

Original Russian Text © O.V. Avchenko, A.S. Vakh, K.V. Chudnenko, O.I. Sharova, 2012, published in Geokhimiya, 2012, Vol. 50, No. 5, pp. 453–469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avchenko, O.V., Vakh, A.S., Chudnenko, K.V. et al. Physicochemical crystallization conditions of Al-F sphene in metasomatic rocks with ore mineralization at the Berezitovoe Deposit. Geochem. Int. 50, 409–424 (2012). https://doi.org/10.1134/S0016702912040027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912040027

Keywords

Navigation