Skip to main content
Log in

Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Diamond crystals 0.1–0.8 carats were synthesized in experiments conducted in a BARS split-sphere multianvil high-pressure apparatus in the systems Fe-Co-S-C and Fe-Ni-S-C at a pressure of 5.5 GPa and temperature of 1300°C. The microtextures of the samples and the phases accompanying diamond (carbides, graphite, monoslufide solid solution, pentlandite, and taenite) are examined in much detail, the properties of metal-sulfide-carbon alloys are discussed, and issues related to the genesis of sulfide inclusions in diamonds and graphite crystallization in the diamond stability field are considered. The experiments demonstrate that diamonds can be synthesized and grow in pre-eutectic metal-sulfide melts with up to 14 wt % sulfur at relatively low P-T parameters, which correspond to the probable temperatures and pressures of natural diamond-forming processes at depths of approximately 150 km in the Earth’s upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Sharp, “Pyrrhotite: A Common Inclusion in the South African Diamonds,” Nature 211(5047), 402–403 (1966).

    Article  Google Scholar 

  2. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide Inclusions in Diamonds and Distinctive Features of their Association,” Zap. Vseross. Mineral. O-va 112(3), 300–310 (1983).

    Google Scholar 

  3. J. W. Harris and J. J. Gurney, Inclusions in Diamond, in The properties of Diamond, Ed. by J. E. Field, etc. (Academic Press, London, 1979), pp. 554–591.

    Google Scholar 

  4. N. V. Sobolev, “Deep Nodules in Kimberlites and Composition of the Upper Mantle,” (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  5. H. O. A. Meyer, “Inclusions in Diamond,” in Mantle Xenoliths, Ed. by P. H. Nixon (John Wiliy and Sons Ltd, Chichester, 1987), pp. 501–533.

    Google Scholar 

  6. G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in the Diamonds and Xenoliths from Kimberlite Pipes in Yakutia (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  7. G. P. Bulanova, W. L. Griffin, C. G. Ryan, O. V. Shestakova, S. J. Barnes, “Trace Elements in Sulfide Inclusions from Yakutian Diamonds,” Contrib. Mineral. Petrol. 124, 111–125 (1996).

    Article  Google Scholar 

  8. S. L. Hwang, P. Shen, H. T. Chu, and T. F. Yui, “Genesis of Microdiamonds from Melt and Associated Multiphase Inclusions in Garnet of Ultrahigh-Pressure Gneiss from Erzgebirge, Germany,” Earth Planet. Sci. Lett. 188, 9–15 (2001).

    Article  Google Scholar 

  9. S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, J. G. Liou, N. V. Sobolev, V. S. Shatsky, “Crust-Derived Potassic Fluid in Metamorphic Microdiamond,” Earth Planet. Sci. Lett. 231, 295–306 (2005).

    Article  Google Scholar 

  10. P. C. Marx, “Pyrrotine and the Origin of Terrestrial Diamonds,” Mineral. Mag. 38, 636–638 (1972).

    Article  Google Scholar 

  11. S. E. Haggerty, “Diamond Genesis in a Multiply Constrained Model,” Nature 320, 34–38 (1986).

    Article  Google Scholar 

  12. G. P. Bulanova, “The Formation of Diamond,” J. Geochem. Explor. 53, 1–23 (1995).

    Article  Google Scholar 

  13. R. H. Wentorf, “Diamond Formation at High Pressure,” Adv. High-Pressure Res. 4, 249–281 (1974).

    Google Scholar 

  14. A. I. Chepurov, “On the Role of Sulfide Melt in the Natural Diamond Formation,” Geol. Geofiz., No. 8, 119–124 (1988).

  15. Yu. N. Pal’yanov, A. G. Sokol, and N. V. Sobolev, “Experimental Modeling of Mantle Diamond-Forming Processes,” Russ. Geol. Geophys., No. 12, 1271–1284 (2005).

  16. A. I. Chepurov, I. I. Fedorov, V. M. Sonin, and N. V. Sobolev, “Formation of Diamond in the (Fe,Ni)-S-C-H System at High P-T Parameters,” Dokl. Akad. Nauk 336(2), 238–240 (1994).

    Google Scholar 

  17. Yu. Pal’yanov, Yu. Borzdov, I. Kupriyanov, V. Gusev, A. Khokhryakov, and A. Sokol, “High Pressure Synthesis and Characterization of Diamond from a Sulfur-Carbon System,” Diamond Relat. Mater., No. 10, 2145–2152 (2001).

  18. Yu. N. Pal’yanov, Yu. M. Borzdov, Yu. I. Ovchinnikov, and N. V. Sobolev, “Experimental Study of the Interaction between Pentlandite Melt and Carbon at Mantle P-T Parameters: Condition of Diamond and Graphite Crystallization,” Dokl. Earth Sci. 392, 1026–1039 (2003).

    Google Scholar 

  19. Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The First Synthesis of Diamond in Sulfide-Carbon Systems: The Role of Sulfides in Diamond Genesis,” Dokl. Earth. Sci. 382, 40–43 (2002).

    Google Scholar 

  20. A. V. Shushkanova and Yu. A. Litvin, “Formation of Diamond Polycrystals in Pyrrhotite-Carbonic Melt: Experiments at 6.7 GPa,” Dokl. Earth Sci. 409, 916–920 (2006).

    Article  Google Scholar 

  21. Yu. N. Pal’yanov, Yu. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, N. V. Sobolev, “Sulfide Melts-Graphite Interaction at HPHT Conditions: Implications for Diamond Genesis,” Earth Planet. Sci. Lett. 250, 269–280 (2006).

    Article  Google Scholar 

  22. Yu. N. Pal’yanov, Yu. M. Borzdov, Yu. V. Bataleva, A.G. Sokol, A. G. Pal’yanova, I. N. Kupriyanov, “Reducing Role of Sulfides and Diamond Formation in the Earth’s Mantle,” Earth Planet. Sci. Lett. 260, 242–256 (2007).

    Article  Google Scholar 

  23. A. V. Shushkanova and Yu. A. Livin, “Diamond Nucleation and Growth in Sulfide-Carbon Melts: An Experimental Study at 6.0–7.1 GPa,” Eur. J. Mineral. 20, 349–355 (2008).

    Article  Google Scholar 

  24. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN NITs OIGGM, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  25. M. E. Fleet, “Phase Equilibria at High Temperature,” Rev. Mineral. Geochem. 61, 365–419 (2006).

    Article  Google Scholar 

  26. A. Sugaki and A. Kitakaze, “High Form of Pentlandite and Its Thermal Stability,” Am. Mineral. 83(1–2), 133–140 (1998).

    Google Scholar 

  27. A. Durazzo and L. A. Taylor, “Exsolution and Textures in the Mss-Pentlandite System,” Mineral. Deposita 17, 313–332 (1982).

    Google Scholar 

  28. G. Kullerud, “Thermal Stability of Pentlandite,” Can. Mineral. 7, 353–366 (1963).

    Google Scholar 

  29. Zh. N. Fedorova and E. F. Sinyakova, “Experimental Study of Physicochemical Conditions of Pentlandite Formation,” Geol. Geofiz. 34(27), 84–92 (1993).

    Google Scholar 

  30. S. Karup-Moller and E. Makovicky, “The Phase System Fe-Ni-S at 725°C,” N. Jb. Mineral. Mh 1, 1–10 (1995).

    Google Scholar 

  31. N. Ramajani and C. T. Prewitt, “Thermal Expansion of the Pentlandite Structure,” Am. Mineral. 60, 39–48 (1975).

    Google Scholar 

  32. D. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill Book Company, New-York-Toronto-London, 1958).

    Google Scholar 

  33. E. F. Sinyakova and V. I. Kosyakov, “600°C Section of the Fe-FeS-NiS-Ni Phase Diagram,” Inorgan. Mater. 37, 1130–1137 (2001).

    Article  Google Scholar 

  34. P. Wyszomirski, “The Pure Dry Fe-Co-S System at 400°C to 1000°C,” N. Jb. Mineral. Abh 139, 131–132 (1980).

    Google Scholar 

  35. I. I. Fedorov, A. I. Chepurov, V. M. Sonin, A. A. Chepurov, A. M. Logvinova, “Experimental and Thermodynamic Study of the Crystallization of Diamond and Silicates in a Metal-Silicate-Carbon System,” Geochem. Int. 46, 340–350 (2008).

    Article  Google Scholar 

  36. A. A. Chepurov, I. I. Fedorov, and A. I. Chepurov, “Experimental Study of Diamond Crystallization in the Metal-Silicate-Carbon Systems,” Otechestvennaya Geologiya, No. 1, 56–60 (2001).

  37. A. A. Kadik, “Effect of Redox State of the Planetary Matter on the Formation of Carbon-Saturated Fluids in the Earth’s Upper Mantle,” Vestn. OGGGGN RAN, No. 4, 65–85 (1999).

  38. A. Kadik, F. Pinean, Yu. Litvin, N. Jendrzejewski, I. Martinez, M. Javoy, “Formation of Carbon and Hydrogen Species in Magmas at Low Oxygen Fugacity During Fluid-Absent Melting of Carbon-Bearing Mantle,” J. Petrol. 45, 1297–1310 (2004).

    Article  Google Scholar 

  39. L. B. Tsymbulov and L. Sh. Tsemekhman, “Solubility of Carbon in Sulfide Melts of the System Fe-Ni-S,” Russ. J. Appl. Chem. 74, 925–929 (2001).

    Article  Google Scholar 

  40. L. A. Taylor and Ya. Li, “Sulfide Inclusions in Diamond: Non Monosulfide Solid Solution,” Russ. Geol. Geophys., No. 12, 1201–1211 (2009).

  41. V. I. Kosyakov, A. G. Kraeva, Zh. N. Fedorova, and E. F. Sinyakova, “Topological Analysis of Evolution of Phase Equilibria in the Fe-Ni-S System in the Region Xs ≤ 0.5 at Temperature Decrease,” Geol. Geofiz. 37(12), 7–17 (1996).

    Google Scholar 

  42. E. F. Sinyakova, V. I. Kosyakov, and V. A. Shestakov, “Investigation of the Surface of the Liquidus of the Fe-Ni-S System at Xs ⩽ 0.51,” Metall. Mater. Trans. 30B, 715–722 (1999).

    Google Scholar 

  43. D. P. Kelly and D. J. Vaughan, “Pyrrhotite-Pentlandite Ore Textures: A Mechanistic Approach,” Mineral. Mag. 47, 453–463 (1983).

    Article  Google Scholar 

  44. N. R. Khisina, Subsolidus Transformations of Solid Solutions of Rock-Forming Minerals (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  45. A. J. Naldrett, J. R. Craig, and G. Kullerud, “The Central Portion of the Fe-Ni-S System and Its Bearing on Pentlandite Exsolution in Iron-Nickel Sulfide Ores,” Econ. Geol. 62, 826–847 (1967).

    Article  Google Scholar 

  46. R. W. Shewman and L. A. Clark, “Pentlandite Phase Relations in the Fe-Ni-S System and Notes on the Monosulfide Solid Solution,” Can. J. Earth Sci. 7, 67–85 (1970).

    Article  Google Scholar 

  47. S. H. Richardson, J. J. Gurney, A. J. Erlank, and J. W. Harris, “Origin of Diamonds in Old Enriched Mantle,” Nature 310(5974), 198–202 (1984).

    Article  Google Scholar 

  48. S. H. Richardson, S. B. Shirey, J. W. Harris, and R. W. Carlson, “Archean Subduction Recorded by Re-Os Isotopes in Eclogitic Sulfide Inclusions in Kimberley Diamonds,” Earth Planet. Sci. Lett., 257–266 (2001).

  49. I. I. Fedorov, A. I. Chepurov, V. M. Sonin, and E. I. Zhimulev, “Experimental Study of the Effect of High Pressure and High Temperature on Silicate and Oxide Inclusions in Diamonds,” Geochem. Int. 44, 1048–1051 (2006).

    Article  Google Scholar 

  50. A. A. Chepurov, J. M. Dereppe, I. I. Fedorov, and A. I. Chepurov, “The Change of Fe-Ni Alloy Inclusions in Synthetic Diamond Crystals Due To Annealing,” Diamond Relat. Mater. 9, 1374–1379 (2000).

    Article  Google Scholar 

  51. I. I. Fedorov, A. I. Chepurov, A. A. Chepurov, and A. V. Kuroedov, “Estimation of the Rate of Postcrystallization Self-Purification of Diamond from Metal Inclusions in the Earth’s Mantle,” Geochem. Int. 43, 1235–1239 (2005).

    Google Scholar 

  52. A. I. Chepurov, I. I. Fedorov, V. M. Sonin, A. M. Logvinova, A. A. Chepurov, “Thermal Effect on sulfide inclusions in diamonds (from Experimental Data),” Russ. Geol. Geophys. 49(10), 738–742 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Chepurov.

Additional information

Original Russian Text © E.I. Zhimulev, A.I. Chepurov, E.F. Sinyakova, V.M. Sonin, A.A. Chepurov, N.P. Pokhilenko, 2012, published in Geokhimiya, 2012, Vol. 50, No. 3, pp. 227–239.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhimulev, E.I., Chepurov, A.I., Sinyakova, E.F. et al. Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond. Geochem. Int. 50, 205–216 (2012). https://doi.org/10.1134/S0016702912030111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912030111

Keywords

Navigation