Skip to main content
Log in

Modeling the structure, properties, and point defects of forsterite in the ionic-covalent approximation

  • Short Communications
  • Published:
Geochemistry International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. O. Jaoul, Y. Bertran-Alvarez, R. C. Liebermann, and G. D. Price, “Fe-Mg Interdiffusion in Olivine up to 9GPa at T = 600–900°C; Experimental Data and Comparison with Defect Calculations,” Phys. Earth Planet. Inter. 89, 199–218 (1995).

    Article  Google Scholar 

  2. J. A. Purton, N. L. Allan, J. D. Blundy, and E. A. Wasserman, “Isovalent Trace Element Partitioning between Minerals and Melts: A Computer Simulation Study,” Geochim. Cosmochim. Acta 60, 4977–4987 (1996).

    Article  Google Scholar 

  3. J. A. Purton, N. L. Allan, and J. D. Blundy, “Calculated Solution Energies of Heterovalent Cations in Forsterite and Diopside: Implications for Trace Element Partition ing,” Geochim. Cosmochim. Acta 61(18), 3927–3936 (1997).

    Article  Google Scholar 

  4. K. Wright and C. R. A. Catlow, “A Computer Simulation Study of (OH) Defects in Olivine,” Phys. Chem. Miner. 20, 515–518 (1994).

    Google Scholar 

  5. A. M. Walker, K. Wright, and B. Slater, “A Computational Study of Oxygen Diffusion in Olivine,” Phys. Chem. Miner. 30, 536–545 (2003).

    Article  Google Scholar 

  6. V. B. Dudnikova, V. S. Urusov, and E. V. Zharikov, “Crystal-Melt Partition Coefficients of Impurities in Forsterite, Mg2SiO4: Experimental Determination, Crystal-Chemical Analysis, and Thermodynamic Evaluation,” Inorgan. Mater. 41, 627–638 (2005).

    Article  Google Scholar 

  7. V. S. Urusov, V. B. Dudnikova, and E. V. Zharikov, “Crystal Chemical and Energy Analysis of Partition Coefficients of Impurities during Melt Crystallization: The Case of Olivine,” Geochem. Int. 44, 19–32 (2006).

    Article  Google Scholar 

  8. F. Be-jina, M. Blanchard, K. Wright, and G. D. Price, “A Computer Simulation Study of the Effect of Pressure on Mg Diffusion in Forsterite,” Phys. Earth Planet. Inter. 172, 13–19 (2009).

    Article  Google Scholar 

  9. A. M. Walker, S. M. Woodley, B. Slater, and K. Wright, “A Computation Study of Magnesium Point Defects and Diffusion in Forsterite,” Phys. Earth Planet. Inter 172, 20–27 (2009).

    Article  Google Scholar 

  10. N. C. Richmond and J. P. Brodholt, “Incorporation of Fe3+ into Forsterite and Wadsleyite,” Am. Mineral. 85, 1155–1158 (2000).

    Google Scholar 

  11. A. M. Walker, S. Demouchy, and K. Wright, “Computer Modeling of the Energies and Vibrational Properties of Hydroxyl Groups in α- and β-Mg2SiO4,” Eur. J. Mineral 18, 529–543 (2006).

    Article  Google Scholar 

  12. C. R. A. Catlow, “Point Defect and Electronic Properties of Uranium Dioxide,” Proc. R. Soc. London A353, 533–561 (1977).

    Google Scholar 

  13. M. J. Sanders, M. J. Leslie, and C. R. A. Catlow, “Interatomic Potentials for SiO2,” J. Chem. Soc. Chem. Com. 18, 1271–1273 (1984).

    Article  Google Scholar 

  14. G. V. Lewis and C. R. A. Catlow, “Potential Models for Ionic Oxides,” J. Phys. Solid State Phys. 18, 1149–1161 (1985).

    Article  Google Scholar 

  15. A. K. Verma and B. Karki, “Ab Initio Investigations of Native and Protonic Point Defects in Mg2SiO4 Polymorphs under High Pressure,” Earth Planet. Sci. Lett. 285, 140–149 (2009).

    Article  Google Scholar 

  16. J. Brodholt, “Ab Initio Calculations on Point Defects in Forsterite (Mg2SiO4) and Implications for Diffusion and Creep,” Am. Mineral. 82, 1049–1053 (1997).

    Google Scholar 

  17. S. C. Parker and G. D. Price, “A Study of the Structures and Energetics of Magnesium Silicates,” Physica 131B, 290–299 (1985).

    Google Scholar 

  18. A. Pavese, “Thermoelastic and Structural Properties of Forsterite as Function of P and T: A Computer Simulation Study, by Semi-Classical Potentials and Quasi-Harmonic Approximation,” Phys. Chem. Minerals 26, 44–54 (1998).

    Article  Google Scholar 

  19. M. Matsui and T. Matsumoto, “Crystal Structure and Elastic Constants of β-Mg2SiO4 under High Pressure Simulated from a Potential Model,” Acta Crystallogr. 41, 377–382 (1985).

    Article  Google Scholar 

  20. K. Leinenweber and A. Navrotsky, “A Transferable Interatomic Potential for Crystalline Phases in the System MgO-SiO2,” Phys. Chem. Minerals 15, 588–596 (1988).

    Article  Google Scholar 

  21. A. B. Belonoshko and L. S. Dubrovinsky, “Molecular and Lattice Dynamics Study of the MgO-SiO2 System Using a Transferable Interatomic Potential,” Geochim. Cosmochim. Acta 60(10), 1645–1656 (1996).

    Article  Google Scholar 

  22. V. S. Urusov and L. S. Dubrovinskii, Computer Modeling of Structure and Properties of Minerals (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

  23. A. Kirfel, T. Lippman, P. Blaha, et al., “Electron Density Distribution and Bond Critical Point Properties for Forsterite, Mg2SiO4, Determined with Synchrotron Single Crystal X-Ray Diffraction Data,” Phys. Chem. Minerals 32, 301–313 (2005).

    Article  Google Scholar 

  24. J. D. Gale, “GULP: A Computer Program for the Symmetry-Adopted Simulation of Solids,” J. Chem. Soc., Faraday Trans. 93(4), 629–637 (1997).

    Article  Google Scholar 

  25. J. Gale and A. L. Rohl, “The General Utility Lattice Program (GULP),” Mol. Simul. 29(5), 291–341 (2003).

    Article  Google Scholar 

  26. B. G. Dick and A. W. Overhauser, “Theory of the Dielectric Constants of Alkali Halide Crystals,” Phys. Rev. 112, 90–103 (1958).

    Article  Google Scholar 

  27. N. F. Mott and M. J. Littleton, “Conduction in Polar Crystals. I. Electrolytic Conduction in Solid Salts,” Trans. Faraday Soc. 34, 485–499 (1938).

    Article  Google Scholar 

  28. O. L. Anderson and D. G. Isaak, Minerals Physics and Crystallography. A Handbook of Physical Constants (AGU Reference Self 2, 1995) Vol. 64.

  29. S. Ji and Z. Wang, “Elastic Properties of Forsterite-Enstatite Composites up to 3.0 GPa,” J. Geodynam. 28, 147–174 (1999).

    Article  Google Scholar 

  30. A. Chopelas, “Thermal Properties of Forsterite at Mantle Pressures Derived from Vibrational Spectroscopy,” Phys. Chem. Minerals 17, 149–156 (1990).

    Google Scholar 

  31. V. B. Dudnikova and V. S. Urusov, “A Mechanism for the Growth of Trace Element Partition Coefficients during Melt Crystallization: Trapping Effect. Heterovalent Systems,” Geokhimiya, No. 4, 483–495 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Dudnikova.

Additional information

Original Russian Text © V.S. Urusov,V.B. Dudnikova, 2011, published in Geokhimiya, 2011, Vol. 49, No. 10, pp. 1097–1105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urusov, V.S., Dudnikova, V.B. Modeling the structure, properties, and point defects of forsterite in the ionic-covalent approximation. Geochem. Int. 49, 1035–1042 (2011). https://doi.org/10.1134/S0016702911100090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911100090

Keywords

Navigation