Skip to main content
Log in

Geochemical conditions for the isolation of the long-lived radioisotope technetium-99

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Conditions required for the isolation of Tc-bearing wastes include their incorporating into metallic alloys and placement in underground waste repositories under reduced conditions. The paper reports means of synthesizing these matrices and distinctive structural features of samples produced by self-propagating high-temperature synthesis (SHS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Curtis, J. Fabryka-Martin, P. Dixon, and J. Cramer, “Nature’s Uncommon Elements: Plutonium and Technetium,” Geochim. Cosmochim. Acta 63(2), 275–285 (1999).

    Article  Google Scholar 

  2. N. N. Popova, I. G. Tananaev, S. I. Rovnyi, and B. F. Myasoedov, “Technetium: Behavior during Reprocessing of Spent Nuclear Fuel and in Environmental Objects,” Russ. Chem. Rev. 72, 101–121 (2003).

    Article  Google Scholar 

  3. V. F. Peretrukhin, F. Muazi, A. G. Maslennikov, et al., “Physicochemical Behavior of Uranium and Technetium at Some New Stages of Nuclear Fuel Cycle,” Russ. Chem. J. 51(6), 12–24 (2007).

    Google Scholar 

  4. J. Bruno and R. C. Ewing, “Spent Nuclear Fuel,” Elements 2(6), 343–349 (2006).

    Article  Google Scholar 

  5. B. D. Hanson, J. I. Friese, and C. Z. Soderquist, “Initial Results from Dissolution Testing of Spent Fuel under Acidic Conditions,” in Proceedings of the 27th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2004 Mater. Res. Soc. Symp. Proc. 824, 113–118 (2004).

    Google Scholar 

  6. P. A. Finn, R. Finch, E. Buck, and J. Bates, “Corrosion Mechanisms of Spent Fuel Under Oxidizing Conditions,” in Proceedings of 27th Symposium on Scientific Basis for Nuclear Waste Management, Pittsburgh, US, 1998, Mater. Res. Soc. Symp. Proc. 506, 123–131 (1998).

    Google Scholar 

  7. Nuclear Fuels, (CEA, Paris, 2009).

  8. J. A. Fortner, A. J. Kropf, R. J. Finch, and J. C. Cunnane, “Technetium and Molybdenum in Oxide Spent Nuclear Fuel: Impact on Release Estimates,” in Proceedings of the 27th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2004 Mater. Res. Soc. Symp. Proc. 824, 107–112 (2004).

    Google Scholar 

  9. T. L. Markin and E. J. Mclver, “Thermodynamic and Phase Studies for Plutonium and Uranium Plutonium Oxides with Application to Compatibility Calculations,” in Plutonium 1965. Proceedings of the 3rd Conf. on Plutonium, Ed. by A. E. Kay and M. B. Waldron (Chapman et Hall, London, 1967), pp. 845–877.

    Google Scholar 

  10. D. R. O’Boyle, F. L. Brown, and J. E. Sanecki, “Solid Fission Product Behavior in Uranium-Plutonium Oxide Fuel Irradiated in a Fast Neutron Flux,” J. Nucl. Mater. 29(1), 27–42 (1969).

    Article  Google Scholar 

  11. L. H. Johnson and D. W. Shoesmith, “Spent Fuel,” in Radioactive Waste Forms for the Future, Ed. by W. Lutze and R. Ewing, (Elsevier, Amsterdam, 1988), pp. 635–698.

    Google Scholar 

  12. A. A. Kopyrin, A. I. Karelin, and V. A. Karelin, Technology of Production and Radiochemical Processing of Nuclear Fuel (Atomenergoizdat, Moscow, 2006) [in Russian].

    Google Scholar 

  13. Corrosion and Alteration of Nuclear Materials (CEA, Paris, 2010).

  14. N. Taniguchi, A. Honda, and H. Ishikawa, “Experimental Investigation of Passivation Behavior and Corrosion Rate of Carbon Steel in Compacted Bentonite,” in Proceedings of the 21st Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 1998, Mater. Res. Soc. Symp. Proc., 506, 495–501 (1998).

    Google Scholar 

  15. D. W. Shoesmith, F. King, and B. M. Ikeda, “The Indefinite Containment of Nuclear Fuel Wastes,” in Proceedings of the 19th Symposium on the Scientific Basis for Nuclear Waste Management, Pittsburgh, US, 1996, Mater. Res. Soc. Symp. Proc. 412, 563–570 (1996).

    Google Scholar 

  16. R. B. Rebak and J. C. Estill, “Review of Corrosion Modes for Alloy 22 Regarding Lifetime Expectancy of Nuclear Waste Containers,” in Proceedings of the 26th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2003, Mater. Res. Soc. Symp. Proc. 757, 713–721 (2003).

    Google Scholar 

  17. R. T. Pabalan, D. R. Turner, and M. P. Miklas, “Technetium-99 Chemistry in Reducing Ground Waters: Implications for the Performance of a Proposed High-Level Nuclear Waste Repository at Yucca Mountain, Nevada,” in Proceedings of the 23rd Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2000 Mater. Res. Soc. Symp. Proc. 608, 231–236 (2000).

    Google Scholar 

  18. Deleterious Chemical Matters. Radioactive Substances, Ed. by L. A. Il’in and V. A. Filov (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  19. A. Aloy, E. N. Kovarskaya, J. R. Harbour, et al., “Pretreatment of Tc-Containing Waste and Its Effect on Tc-99 Leaching from Grouts,” in Proceedings of the 30th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2007, Mater. Res. Soc. Symp. Proc. 985 Paper 0985-NN10-02 (2007).

  20. D. Singh, V. R. Mandalika, S. J. Parulekar, and A. S. Wagh, “Magnesium Potassium Phosphate Ceramic for 99Tc Immobilization,” J. Nucl. Radiochem. Sci. 4(1), A1–A8 (2003).

    Google Scholar 

  21. S. E. Vinokurov, Yu. M. Kulyako, O. M. Slyunchev, et al., “Magnesium Potassium Phosphate Matrices for Immobilization of High-Level Liquid Wastes,” Radiochemistry 51, 65–72 (2009).

    Article  Google Scholar 

  22. E. G. Dzekun, A. N. Mashkin, K. K. Korchenkin, and A. K. Nardova, RF Patent No. 2132093, Byull. Izobret., 1999.

  23. N. E. Bibler, T. L. Fellinger, S. L. Marra, et al., “Tc-99 and Cs-137 Volatility from the DWFP Production Melter during Vitrification of the First Macrobatch of HLW Sludge at the Savannah River Site,” in Proceedings of the 23rd Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2000, Mater. Res. Soc. Symp. Proc. 698, 697–702 (2000).

    Google Scholar 

  24. W. L. Ebert, S. F. Wolf, and J. R. Bates, “The Release of Technetium from Defense Waste Processing Facility Glasses,” in Proceedings of the 23rd Symposium on the Scientific Basis for Nuclear Waste Management, Pittsburgh, US, 1996 Mater. Res. Soc. Symp. Proc. 412, 221–227 (1996).

    Google Scholar 

  25. V. F. Gorn, S. A. Dubkov, K. K. Korchenkin, and A. N. Mashkin, Study of the Behavior of Technetium during Glass Melting on a EP-500 Furnace, Plant RT-1, in Proceedings of the 6th Russian Conference on Radiochemistry, Ozersk, Russia, 2009 (FGUP PO “Mayak”, Ozersk, 2009).

    Google Scholar 

  26. V. Pirlet, K. Lemmens, and P. Van Iseghem, “Leaching of Np and Tc from Doped Nuclear Waste Glasses in Clay Media: The Effects of Redox Conditions,” in Proceedings of the 25th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2002, Mater. Res. Soc. Symp. Proc. 713, 563–570 (2002).

    Google Scholar 

  27. V. Pirlet, K. Lemmens, and P. Van Iseghem, “Influence of the Near-Field Conditions on the Mobile Concentrations of Np and Tc Leached from Vitrified HLW,” in Proceedings of the 27th Symposium on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 2004, Mater. Res. Soc. Symp. Proc. 824, pp. 385–392 (2004).

    Google Scholar 

  28. “Standard of Radiation Safety, SRS, 2009,”. Ross. Gazeta, No. 171, (2009).

  29. K. P. Hart, E. R. Vance, R. A. Day, et al., “Immobilization of Separated Tc and Cs/Sr in Synroc,” in Proceedings of the 19th Symposium on the Scientific Basis for Nuclear Waste Management, Pittsburgh, US, 1996, Mater. Res. Soc. Symp. 412, 281–288 (1996).

    Google Scholar 

  30. M. L. Carter, M. W. A. Stewart, E. R. Vance, et al., “HIPed Tailored Ceramic Waste Forms for Immobilization of Cs, Sr, and Tc,” in Proc. Int. Conf.’ Global 2007,’ (INL, Idaho, 2007), pp. 1022–1028

    Google Scholar 

  31. M. Y. Khalil and W. B. White, “Magnesium Titanate Spinel: A Ceramic Phase for Immobilization of Technetium-99 from Radioactive Waste,” Comm. Amer. Ceram. Soc 66(10), 197–198 (1983).

    Article  Google Scholar 

  32. M. I. Exter, S. Neumann, and T. Tomasberger, “Immobilization and Behavior of Technetium in a Magnesium Titanate Matrix for Final Disposal,” in Proceedings of the 29th Symposium on the Scientific Basis for Nuclear Waste Management, Warrandale, US, 2006 Mater. Res. Soc. Symp. Proc. 932, 567–574 (2006).

    Google Scholar 

  33. A. E. Ringwood, “Disposal of High-Level Nuclear Wastes: A Geological Perspective,” Mineral. Magaz. 49Part 2, 159–176 (1985).

    Article  Google Scholar 

  34. E. R. Vance, K. P. Hart, M. L. Carter, et al., “Further Studies of Synroc Immobilization of HLW Sludges and Tc for Hanford Tank Waste Immobilization,” in Proceedings of 21st Symposium on Scientific Basis for Nuclear Waste Management, Warrendale, US, 1998 Mater. Res. Soc. Symp. 506, 289–293 (1998).

    Google Scholar 

  35. S. G. Johnson, D. D. Keiser, M. Noy, et al., “Microstructure and Leaching Characteristics of a Technetium Containing Metal Form,” in Proceedings of the 22nd Conference on the Scientific Basis for Nuclear Waste Management, Warrendale, US, 1999 Mater. Res. Soc. Symp. Proc. 556, 953–960 (1999).

    Google Scholar 

  36. D. D. Keiser, D. P. Abraham, and J. W. Richardson, “Influence of Technetium on the Microstructure of a Stainless Steel-Zirconium Alloy,” J. Nucl. Mater. 277(2–3), 333–338 (2000).

    Article  Google Scholar 

  37. S. G. Johnson, M. Noy, T. Di Santo, and T. L. Barber, “Release of Neptunium, Plutonium, Uranium and Technetium from the Metallic Waste Form from the Electrometallurgical Treatment Process,” in Proceedings of the 25th Symposium on the Scientific Basis for Nuclear Waste Management, Warrandale, US, 2002 Mater. Res. Soc. Symp. Proc. 713, 705–712 (2002).

    Google Scholar 

  38. V. T. Gotovchikov and I. V. Osipov, “Industrial Experience and Prospects of Vacuum Induction Furnaces with Cold Crucibles,” Tsvetn. Metall., No. 4, 68–72 (2003).

  39. A. G. Merzhanov, “Combustion and Explosion Processes in the Physical Chemistry and Technology of Inorganic Materials,” Russ. Chem. Rev. 72, 289–310 (2003).

    Article  Google Scholar 

  40. E. E. Konovalov, S. V. Yudintsev, and B. S. Nikonov, “Immobilization of High-Level Nuclear Wastes in the Mineral-Like Materials using Self-Propagating Synthesis,” Izv. Vyssh Uchebn. Zaved. Ser. Yadern. Energetika, No. 1, 32–42 (2007).

  41. S. V. Yudintsev, B. S. Nikonov, E. E. Konovalov, et al., “Study of Matrices Obtained by Self-Propagating High-Temperature Synthesis for Immobilization of Fractionated High-Level Wastes,” Fiz. Khim. Obrab. Mater., No. 2, 86–94 (2007).

  42. N. P. Laverov, S. V. Yudintsev, and B. I. Omel’yanenko, “Isolation of Long-Lived Technetium-99 in Confinement Matrices,” Geol. Ore Dep. 51, 259–274 (2009).

    Article  Google Scholar 

  43. N. P. Laverov, S. V. Yudintsev, E. E. Konovalov, et al., “Matrices for Isolation of Long-Lived Radionuclides,” Dokl. Chem. 431, 102–108 (2010).

    Article  Google Scholar 

  44. N. P. Laverov, S. V. Yudintsev, Yu. I. Korneiko, et al., “Matrix for Immobilization of Radioactive Technetium,” Dokl. Chem. 431, 196–200 (2010).

    Google Scholar 

  45. N. P. Laverov, V. I. Velichkin, and B. I. Omel’yanenko, “Insulative Properties of Crystalline Rocks: On the Problem of High-Level Radioactive Waste Disposal,” Geol. Ore Dep. 43 4–18 (2001).

    Google Scholar 

  46. N. P. Laverov, V. I. Velichkin, B. I. Omel’yanenko, and S. V. Yudintsev, “Geochemistry of Actinides during the Long-Term Storage and Disposal of Spent Nuclear Fuel,” Geol. Ore Dep. 45, 1–18 (2003).

    Google Scholar 

  47. N. P. Laverov, V. I. Velichkin, B. I. Omel’yanenko, et al., Isolation of Spent Nuclear Materials: Geological-Geochemical Principles (IFZ Ross. Akad. Nauk, Moscow, 2008) [in Russian].

    Google Scholar 

  48. Q. Hu and D. K. Smith, “Field-Scale Migration of 99Tc and 129I at the Nevada Test Site,” in Proceedings of 27th Symposium on Scientific Basis for Nuclear Waste Management, Warrendale, US, 2004 Mater. Res. Soc. Symp. Proc. 824, 399–404 (2004).

    Google Scholar 

  49. K. A. Traexler and R. C. Ewing, Colloid Formation and the Potential Effects on Radionuclide Transport in a Geologic Repository for Spent Nuclear Fuel Report for U.S. Department of Energy (Univ. Michigan, Ann Arbor, 2002).

    Google Scholar 

  50. K. H. Lieser and C. Bauscher, “Technetium in the Hydrosphere and in the Geosphere. 1. Chemistry of Technetium and Iron in Natural Waters and Influence of the Redox Potential on the Sorption of Technetium,” Radiochem. Acta 42, 205–213 (1987).

    Google Scholar 

  51. K. H. Lieser and C. Bauscher, “Technetium in the Hydrosphere and in the Geosphere. 2. Influence of PH, Complexing Agents and of Some Minerals on the Sorption of Technetium,” Acta 44/45, 125–128 (1988).

    Google Scholar 

  52. D. G. Brookins, Eh-PH Diagrams for Geochemistry (Springer, New York, 1988).

    Google Scholar 

  53. B. Viani, Assessing Materials (“Getters”) to Immobilize or Retard the Transport of Technetium Through the Engineered Barrier System at the Potential Yucca Mountain Nuclear Waste Repository Report UCRL-ID-133596 (LLNL, Berkeley, 1999).

    Google Scholar 

  54. B. Kiennzler, D. Schild, J. Römer, and M. Jansson, “Retention of 99Tc onto Fractures of Crystalline Rocks,” in Mobile Fission and Activation Products in Nuclear Waste Disposal. OECD NEAR Report 6319 (OECD NEA, 2009), pp. 77–86.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Original Russian Text © N.P. Laverov, S.V. Yudintsev, B.I. Omel’yanenko, B.S. Nikonov, M.S. Nikol’skii, 2011, published in Geokhimiya, 2011, Vol. 49, No. 10, pp. 1011–1024.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laverov, N.P., Yudintsev, S.V., Omel’yanenko, B.I. et al. Geochemical conditions for the isolation of the long-lived radioisotope technetium-99. Geochem. Int. 49, 953–966 (2011). https://doi.org/10.1134/S001670291110003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291110003X

Keywords

Navigation