Skip to main content
Log in

Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Complex oxides of the pyrochlore (space groups Fd3m, [8]A2 [6]B2O7) and garnet (Ia3d, [8]A3 [6]B2 [4]T3O12) structures (“A” = Ca2+, Ln3+/4+, An3+/4+; “B” = (Ti, Sn, Hf, and Zr)4+ in pyrochlore, and Al3+, Ga3+, and Fe3+ in garnet alone; “T” = (Al3+, Ga3+, and Fe3+) are promising matrices for actinide-bearing wastes. In order to identify optimal compositions of these phases, their isomorphic capacity with respect to REE, actinides, and other components of wastes was examined. The long-term behavior of the matrix at a repository was predicted based on data obtained on the behavior of pyrochlores and garnets under ion irradiation and 244Cm decay and on the determined leaching rates of REE from the matrices because of their interaction with aqueous solutions, including that after amorphization. In order to propose efficient synthesis techniques, samples prepared with the use of various methods were studied. The possibility of incorporating long-lived decay products of 99Tc into the crystalline matrices was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waste Forms for the Future, Ed. by W. Lutze and R. Ewing (Elsevier, Amsterdam, 1988).

    Google Scholar 

  2. N. P. Laverov, V. I. Velichkin, B. I. Omel’yanenko, et al., Isolation of Spent Nuclear Materials: Geological-Geochemical Principles (IGEM RAN, Moscow, 2008) [in Russian].

    Google Scholar 

  3. A. V. Demine, N. V. Krylova, P. P. Poluektov, et al., “High Level Liquid Waste Solidification Using a “Cold” Crucible Induction Melter,” in Proceedings of Materials Research Society Symposium, Warrendale, US, 2001 (MRS, Warrendale, 2001), Vol. 663, pp. 27–33.

    Google Scholar 

  4. M. I. Solonin, “Treatment Problems of Spent Nuclear Fuel and the Selection of a Locality for Its Storage,” in Proceedings of Seminar on the International Storage of Irradiated Nuclear Fuel, Moscow, Russia, 2003 (Avangard, Moscow, 2005), pp. 33–44 [in Russian].

    Google Scholar 

  5. S. Mtingva, “Possibilities of Transformation of Radioactive Elements,” in Proceedings of Seminar on the International Storage of Irradiated Nuclear Fuel, Moscow, Russia, 2003 (Avangard, Moscow, 2005), pp. 45–72 [in Russian].

    Google Scholar 

  6. B. F. Myasoedov, “Chemical Treatment of High-Level Wastes for the Purpose of Disposal,” in Proceedings of Seminar on the International Storage of Irradiated Nuclear Fuel, Moscow, Russia, 2003 (Avangard, Moscow, 2005), pp. 248–258 [in Russian].

    Google Scholar 

  7. A. A. Kopyrin, A. I. Karelin, and V. A. Karelin, Technology of Production and Radiochemical Recycling of Nuclear Fuel (ZAO “Izd-vo Atomenergoizdat”, Moscow, 2006) [in Russian].

    Google Scholar 

  8. E. B. Anderson, B. E. Burakov, and V. G. Vasiliev, “The Technology of HLW Management in the Project of the Russian Nuclear Fuel Reprocessing Plant,” in Proceedings of International Meeting Nuclear and Hazardous Waste Management, 1994 (Amer. Nucl. Soc. La Grange Park, 1994), Vol. 3, pp. 1969–1975.

  9. A. I. Orlova, V. A. Orlova, M. P. Orlova, et al., “The Crystal-Chemical Principle in Designing Mineral-Like Phosphate Ceramics for Immobilization of Radioactive Waste,” Radiokhimiya 48(4), 297–304 (2006) [Radiochemistry 48, 330–339 (2006)].

    Google Scholar 

  10. G. F. Vandergrift, M. C. Regalbuto, and B. S. Aase, “Lab-Scale Demonstration of the UREX-Process,” in Proceedings of Waste Management Conference, Tucson, US, 2004 (Tuscon, 2004), paper 423.

  11. R. C. Ewing, “The Design and Evaluation of Nuclear Waste Forms: Clues from Mineralogy,” Can. Mineral. 39, 697–715 (2001).

    Article  Google Scholar 

  12. G. R. Lumpkin, “Alpha-Decay Damage and Aqueous Durability of Actinide Host Phases in Natural Systems,” J. Nucl. Mater., No. 289, 136–166 (2001).

    Google Scholar 

  13. R. C. Ewing, W. J. Weber, and J. Lian, “Nuclear Waste Disposal—Pyrochlore (A2B2O7): Nuclear Waste Form for the Immobilization of Plutonium and “Minor” Actinides,” J. Appl. Phys. 95(11), 5949–5971 (2004).

    Article  Google Scholar 

  14. B. I. Omel’yanenko, T. S. Livshits, S. V. Yudintseva, and B. S. Nikonov, “Natural and Artificial Minerals as Matrices for Immobilization of Actinides,” Geol. Rudn. Mestorozhd. 49(3), 173–193 (2007) [Geol. Ore Dep. 49, 173–193].

    Google Scholar 

  15. S. Geller, “Crystal Chemistry of the Garnets,” Zeits. für Kristallogr. 125, 1–47 (1967).

    Article  Google Scholar 

  16. J. Ito and C. Frondel, “Synthesis of Zirconium and Titanium Garnets,” Am. Mineral. 52(5–6), 773–781 (1967).

    Google Scholar 

  17. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, “Oxide Pyrochlores—A Review,” Progr. Sol. State Chem. 15, 55–143 (1983).

    Article  Google Scholar 

  18. B. S. Chakoumakos and R. C. Ewing, “Crystal Chemical Constraints on the Formation of Actinide Pyrochlores,” in Proceedings of Material Research Society Symposium, Pittsburgh, US, 1985 (MRS, Pittsburgh, 1985), Vol. 44, 641–646.

    Google Scholar 

  19. C. De Vito, F. Pezzotta, V. Ferrini, and C. Aurisicchio, “Nb-Ti-Ta Oxides in the Gem-Mineralized and ‘Hybrid’ Anjanabonoina Granitic Pegmatite, Central Madagascar: A Record of Magmatic and Postmagmatic Events,” Can. Mineral. 44(Pt. 1), 87–103 (2006).

    Article  Google Scholar 

  20. S. V. Yudintsev, “A Structural-Chemical Approach to Selecting Crystalline Matrices for Actinide Immobilization,” Geol. Rudn. Mestorozhd. 45(2), 172–187 (2003) [Geol. Ore Dep. 45, 151–165 (2003)].

    Google Scholar 

  21. S. V. Yudintsev, S. V. Stefanovsky, and R. C. Ewing, “Actinide Host Phases as Radioactive Waste Forms,” in Structural Chemistry of Inorganic Actinide Compounds, Ed. by S. Krivovichev, P. Burns, and I. Tananaev (Elsevier, Amsterdam, 2007), pp. 453–490.

    Google Scholar 

  22. N. P. Laverov, S. V. Yudintsev, S. V. Stefanovskii, and Y. N. Jang, “New Actinide Matrix with Pyrochlore Structure,” Dokl. Ross. Akad. Nauk 381(3), 399–402 (2001) [Dokl. Earth Sci. 381, 1053–1056 (2001)].

    Google Scholar 

  23. T. S. Livshits and S. V. Yudintsev, “Natural and Synthetic Minerals—Matrices (Forms) for Actinide Waste Immobilization,” in Minerals As Advanced Materials I, Ed. by I. S. Krivovichev (Springer, Berlin, 2008), pp. 193–207.

    Chapter  Google Scholar 

  24. H. Jaffe, “The Role of Yttrium and Other Minor Elements in the Garnet Group,” Am. Mineral. 36(12), 133–155 (1951).

    Google Scholar 

  25. E. Schingaro, F. Scordari, F. Capitanio, et al., “Crystal Chemistry of Kimzeyite from Anguillara, Mts. Sabatini, Italy,” Eur. J. Mineral. 13, 749–759 (2001).

    Article  Google Scholar 

  26. R. C. Wang, F. Fontain, and X. M. Chen, “Accessory Minerals in the Xihuashan Y-Enriched Granitic Complex, Southern China: a Record of Magmatic and Hydrothermal Stages of Evolution,” Can. Mineral. 41, 727–748 (2003).

    Article  Google Scholar 

  27. I. O. Galuskina, V. M. Gazeev, E. V. Galuskin, et al., “First Find of Uranium Garnet in Nature (Preliminary Report),” in Proceedings of 2nd International Symposium on Uranium: Resources and Production (VIMS, Moscow, 2008), p. 31 [in Russian].

    Google Scholar 

  28. R. C. Ewing, W. J. Weber, and F. W. Clinard, “Radiation Effects in Nuclear Waste Forms for High-Level Radioactive Waste,” Progr. Nucl. Energy 29(2), 63–127 (1995).

    Article  Google Scholar 

  29. G. R. Lumpkin, “Ceramic Waste Forms for Actinides,” Elements 2(6), 365–372 (2006).

    Article  Google Scholar 

  30. W. J. Weber and R. C. Ewing, “Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides,” in Proceedings of Materials Research Symposium, Warrendale, US, 2002 (Warrendale, 2002), Vol. 713, 443–454 (2002).

    Google Scholar 

  31. N. P. Laverov, S. V. Yudintsev, T. S. Yudintseva, et al., “Effect of Radiation on Properties of Confinement Matrices for Immobilization of Actinide-Bearing Wastes,” Geol. Rudn. Mestorozhd. 45(6), 483–513 (2003) [Geol. Ore Dep. 45, 423–451 (2003)].

    Google Scholar 

  32. J. Lian, S. V. Yudintsev, S. V. Stefanovsky, et al., “Ion Beam Irradiation of U-, Thand Ce-Doped Pyrochlores,” J. Alloys Compd., Nos. 444–445, 429–433 (2007).

  33. S. X. Wang, B. D. Begg, L. M. Wang, et al., “Radiation Stability of Gadolinium Zirconate: A Waste Form for Plutonium Disposition,” J. Mater. Res. 14(12), 4470–4473 (1999).

    Article  Google Scholar 

  34. J. Lian, R. C. Ewing, L. M. Wang, and K. B. Helean, “IonBeam Irradiation of Gd2Sn2O7 and Gd2Hf2O7 Pyrochlore: Bond-Type Effect,” J. Mater. Res. 19, 1575–1580 (2004).

    Article  Google Scholar 

  35. R. C. Ewing, “The Nuclear Fuel Cycle versus the Carbon Cycle,” Can. Mineral. 43, 2099–2116 (2005).

    Article  Google Scholar 

  36. S. V. Yudintsev, A. N. Lukinykh, S. V. Tomilin, et al., “Alpha-Decay Induced Amorphization in Cm-Doped Gd2TiZrO7,” J. Nucl. Mater. 385(1), 200–203 (2009).

    Article  Google Scholar 

  37. S. Utsunomiya, S. V. Yudintsev, and R. C. Ewing, “Radiation Effects in Ferrate Garnet,” J. Nucl. Mater. 336(2–3), 251–260 (2005).

    Article  Google Scholar 

  38. S. V. Stefanovsky, S. V. Yudintsev, R. Gieré, and G. R. Lumpkin, “Nuclear Waste Forms,” in Energy, Waste, and the Environment: A Geochemical Perspective, Ed. by R. Gieré and P. Stille, Geol. Soc. Sp. Publ. London 236, 37–63 (2004).

  39. S. Yudintsev, A. Osherova, A. Dubinin, et al., “Corrosion Study of Actinide Waste Forms with Garnet-Type Structure,” in Proceedings of Materials Research Society Symposium, Warrendale, US, 2004 (MRS, Warrendale, 2004), Vol. 824, 287–292 (2004).

    Google Scholar 

  40. S. V. Stefanovskii, S. V. Yudintsev, and B. S. Nikonov, “Effect of Mechanical Activation on Parameters of Synthesis and Characteristics of Ceramics of Zirconate Pyrochlore,” Fiz. Khim. Obrab. Mater., No. 2, 68–77 (2004).

  41. T. S. Livshits, “Stability of Artificial Ferrite Garnets with Actinides and Lanthanoids in Water Solutions,” Geol. Rudn. Mestorozhd. 49(6), 535–547 (2008) [Geol. Ore Dep. 49, 470–481 (2008)].

    Google Scholar 

  42. Determination of the Chemical Stability of Solidified High-Level Wastes by Long Leaching Technique. GOST R 52126-2003 (Izd-vo standartov, Moscow, 2003) [in Russian].

  43. N. P. Laverov, S. V. Yudintsev, S. V. Stefanovskii, et al., “Phase Formation during the Synthesis of Actinide Matrices,” Dokl. Akad. Nauk 383(1), 95–98 (2002) [Dokl. Earth Sci. 383, 190–193 (2002)].

    Google Scholar 

  44. T. S. Yudintseva, “Study of Synthetic Ferrite Garnets in Context with the Problem of Immobilization of Actinide Wastes,” Geol. Rudn. Mestorozhd. 47(5), 444–450 (2005) [Geol. Ore Dep. 47, 403–409 (2005)]

    Google Scholar 

  45. E. M. Glagovskii, A. V. Kuprin, S. V. Yudintsev, et al., “Peculiarities of Natural Actinide Matrices Obtained by Self-Propagating High-Temperature Synthesis,” Vopr. Radiats. Bezop., No. 2, 21–28 (2002).

  46. S. V. Yudintsev, B. S. Nikonov, E. E. Konovalov, et al., “Study of Matrices Obtained by Self-Propagating HighTemperature Synthesis for Immobilization of HLW,” Fiz. Khim. Obrab. Mater., No. 2, 86–94 (2007).

  47. V. F. Peretrukhin, F. Muazi, A. G. Maslennikov, et al., “Physicochemical Behavior of Uranium and Technetium on Some New Stages of Nuclear fuel Cycle,” Ros. Khim. Zhurnal 51(6), 12–24 (2007).

    Google Scholar 

  48. K. P. Hart, E. R. Vance, R. A. Day, et al., “Immobilization of Separated Tc and Cs/Sr in Synroc,” in Proceedings of Materials Research Society Symposium, Pittsburgh, US, 1996 (MRS, Pittsburgh, 1996), Vol. 41, 281–288 (1996).

    Google Scholar 

  49. E. R. Vance, K. P. Hart, M. L. Carter, et al., “Further Studies of Synroc Immobilization of HLW Sludges and Tc for Hanford Tank Waste Immobilization,” Mater. Res. Soc. Symp. 506, 289–293 (1998).

    Google Scholar 

  50. Exter den M.J., Neumann S., Tomasberger T. “Immobilization and Behavior of Technetium in a Magnesium Titanate Matrix for Final Disposal,” in Proceedings of Materials Research Society Symposium, Warrendale, US, 2006 (MRS, Warrendale, 2006), Vol. 932, pp. 567–574.

    Google Scholar 

  51. E. M. Glagovskii, S. V. Yudintsev, A. V. Kuprin, et al., “Crystalline Host Phases for Actinides, Obtained by Self-Propagating High-Temperature Synthesis,” Radiokhimiya 43(6), 557–562 (2001) [Radiochemistry 43, 632–638 (2001)].

    Google Scholar 

  52. T. V. Barinova, I. P. Borovinskaya, V. I. Ratnikov, and T. I. Ignat’eva, “Self-Propagating High-Temperature Synthesis for Immobilization of High-Level Waste in Mineral-Like Ceramics: 1. Synthesis and Study of Titanate Ceramics Based on Perovskite and Zirconolite,” Radiokhimiya 50(3), 274–278 (2008) [Radiochemistry 50, 321–323 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Original Russian Text © N.P. Laverov, S.V. Yudintsev, T.S. Livshits, S.V. Stefanovsky, A.N. Lukinykh, R.C. Ewing, 2010, published in Geokhimiya, 2010, Vol. 48, No. 1, pp. 3–16.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laverov, N.P., Yudintsev, S.V., Livshits, T.S. et al. Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes. Geochem. Int. 48, 1–14 (2010). https://doi.org/10.1134/S0016702910010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910010015

Keywords

Navigation