Skip to main content
Log in

Potential matrices for immobilization of the rare earth-actinide fraction of high-level waste in the REE2Zr2O7-REE2Ti2O7 system

  • Published:
Radiochemistry Aims and scope

Abstract

Phase compositions, structural features, and element distributions were studied for samples of the compositions REE2(Zr2−x Ti x )O7, which are potential matrices for immobilization of the rare earth-actinide fraction of high-level waste from spent nuclear fuel reprocessing. Samples with x up to 0.8 consist of pyrochlore, and at higher titanium content, of pyrochlore and monoclinic REE titanate with perovskite-type structure. The monoclinic phase becomes prevalent at x > 1.2. With respect to the content of the incorporated waste, it surpasses pyrochlore matrices by 10 wt %. The radiation resistance of this phase is close to that of titanate pyrochlore, but its amorphization dose is lower than for zirconate and titanate-zirconate pyrochlore. To check the suitability of monoclinic titanate for immobilization of the REE-actinide waste fraction, it is necessary to study its behavior in solutions and the effect of amorphization on the actinide leaching. The matrix can be prepared by the cold pressing-sintering method suggested in the United States for the synthesis of pyrochlore matrices with plutonium. High rate of solid-phase reactions in titanate systems allows the equilibrium to be attained at a moderate temperature (1400°C) within short sintering time (the first hours). One more possible procedure for matrix fabrication is cold crucible induction melting followed by the melt crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laverov, N.P., Velichkin, V.I., Omel’yanenko, B.I., et al., Izolyatsiya otrabotavshikh yadernykh materialov (geologo-geokhimicheskie osnovy) (Isolation of Spent Nuclear Materials (Geological and Geochemical Principles)), Moscow: Inst. Fiziki Zemli, Ross. Akad. Nauk. 2008.

    Google Scholar 

  2. Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., and Jang, Y.N., Dokl. Earth Sci., 2001, vol. 381A, no. 9, pp. 1053–1056.

    Google Scholar 

  3. Laverov, N.P., Yudintsev, S.V., Livshits, T.S., et al., Geochem. Int., 2010, vol. 48, no. 1, pp. 1–14.

    Article  Google Scholar 

  4. Yudintsev, S.V., Geol. Ore Deposits, 2003, vol. 45, no. 2, pp. 151–165.

    Google Scholar 

  5. Yudintsev, S.V., Stefanovsky, S.V., and Nikonov, V.S., Dokl. Earth Sci., 2014, vol. 454, no. 1, pp. 54–58.

    Article  CAS  Google Scholar 

  6. Lumpkin, G.R., Elements, 2006, vol. 2, no. 6, pp. 365–372.

    Article  CAS  Google Scholar 

  7. Ewing, R.C., Earth Planet. Sci. Lett., 2005, vol. 229, pp. 165–181.

    Article  CAS  Google Scholar 

  8. Hayatt, N.C., Stennet, M., Jenni, A., et al., Mater. Res. Soc. Symp. Proc., 2009, vol. 1193, pp. 61–66.

    Article  Google Scholar 

  9. Ewing, R.C. and Weber, W.J., The Chemistry of the Actinide and Transactinide Elements, Morss, L.R., Edelstein, N.M., Fuger, J., Eds., Dordrecht (Netherlands): Springer, 2010, vol. 6, ch. 35, pp. 3813–3889.

  10. Burakov, B.E., Ojovan, M.I., and Lee, W.E., Crystalline Materials for Actinide Immobilization. Materials for Engineering, London: Imperial College Press. 2011, vol. 1.

    Google Scholar 

  11. Ewing, R.C., Weber, W.J., and Lian, J., J. Appl. Phys., 2004, vol. 95, no. 11, pp. 5949–5971.

    Article  CAS  Google Scholar 

  12. Ebbinghaus, B.B., Van Konynenburg, R.A., Vance, E.R., et al., US Patent 6 137 025, 1999.

  13. Strachan, D.M., Scheele, R.D., Buck, E.C., et al., J. Nucl. Mater., 2005, vol. 345, pp. 109–135.

    Article  CAS  Google Scholar 

  14. Icenhower, J.P., Strachan, D.M., McGrail, B.P., et al., Am. Mineral., 2006, vol. 91, pp. 39–53.

    Article  CAS  Google Scholar 

  15. Ewing, R.C., Can. Mineral., 2005, vol. 43, pp. 2099–2116.

    Article  CAS  Google Scholar 

  16. Myasoedov, B.F., in Materialy seminara “Mezhdunarodnoe khranilishche obluchennogo yadernogo topliva” (Proc. Workshop “International Spent Nuclear Fuel Repository”), Moscow, May 14–15, 2003, Moscow: Avangard, 2005, pp. 248–258.

    Google Scholar 

  17. Implications of Partitioning and Transmutation in Radioactive Waste Management, Vienna: IAEA, 2004.

  18. Kopyrin, A.A., Karelin, A.I., and Karelin, V.A., Tekhnologiya proizvodstva i radiokhimicheskoi pererabotki yadernogo topliva (Technology for Production and Radiochemical Reprocessing of Nuclear Fuel), Moscow: Atomenergoizdat. 2006.

    Google Scholar 

  19. Treatment and Recycling of Spent Nuclear Fuel, Paris: CEA, 2008.

  20. National Program in Chemical Partitioning, Paris: NEA OECD, 2010.

  21. Nash, K.L., Madic, Ch., Mathur, J.N., and Lacquement, J., The Chemistry of the Actinide and Transactinide Elements, Morss, L.R., Edelstein, N.M., Fuger, J., Eds., Dordrecht (Netherlands): Springer, 2010, vol. 4, ch. 24, pp. 2622–2798.

  22. Bruno, J. and Ewing, R.C., Elements, 2006, vol. 2, pp. 343–349.

    Article  CAS  Google Scholar 

  23. Walker, C.T., Rondinella, V.V., Papaioannou, D., et al., J. Nucl. Mater., 2005, vol. 345, pp. 192–205.

    Article  CAS  Google Scholar 

  24. Ivanets, D.V., Tananaev, I.G., and Sarychev, G.A., Tsvetn. Met., 2010, no. 3, pp. 66–72.

    Google Scholar 

  25. Collins, E.D., Jubin, R.T., DelCul, G.D., et al., in Proc. Int. Conf. “Global 2009,” Paris (France), Sept. 06–11, 2009, pp. 2595–2602.

    Google Scholar 

  26. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Prog. Solid State Chem., 1983, vol. 15, pp. 55–143.

    Article  CAS  Google Scholar 

  27. Shoup, S.S. and Bamberger, C.E., Mater. Res. Soc. Symp. Proc., 1997, vol. 465, pp. 379–386.

    Article  CAS  Google Scholar 

  28. Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., et al., Dokl. Earth Sci., 2002, vol. 383, no. 2, pp. 190–193.

    CAS  Google Scholar 

  29. Stefanovsky, S.V., Yudintsev, S.V., and Nikonov, B.S., Fiz. Khim. Obrab. Mater., 2004, no. 2, pp. 68–77.

    Google Scholar 

  30. Gong, W. and Zhang, R., J. Alloys Compd., 2013, vol. 548, pp. 216–221.

    Article  CAS  Google Scholar 

  31. Skapin, S.D., Kolar, D., and Suvorov, D., Solid State Sci., 1999, vol. 1, pp. 245–255.

    Article  CAS  Google Scholar 

  32. Skapin, S.D., Kolar, D., and Suvorov, D., J. Eur. Ceram. Soc., 2000, vol. 20, pp. 1179–1185.

    Article  CAS  Google Scholar 

  33. Preuss, A. and Gruehn, R., J. Solid State Chem., 1994, vol. 110, pp. 363–369.

    Article  CAS  Google Scholar 

  34. Gong, W. and Zhang, R., Thermochim. Acta, 2012, vol. 534, pp. 28–32.

    Article  CAS  Google Scholar 

  35. Shoup, S.S., Bamberger, C.E., Tyree, J.L., and Anovitz, L.M., J. Solid State Chem., 1996, vol. 127, pp. 231–239.

    Article  CAS  Google Scholar 

  36. Shoup, S.S., Bamberger, C.E., Haverlock, T.J., and Peterson, J.R., J. Nucl. Mater., 1997, vol. 240, pp. 112–117.

    Article  CAS  Google Scholar 

  37. Harvey, E.J., Whittle, K.R., Lumpkin, G.R., et al., J. Solid State Chem., 2005, vol. 178, no. 3, pp. 800–810.

    Article  CAS  Google Scholar 

  38. Smith, K.L., Blackford, M.G., Lumpkin, G.R., et al., Microsci. Microanal., 2006, vol. 12, suppl. 2, pp. 1094–1095.

    Article  Google Scholar 

  39. Whittle, K.R., Lumpkin, G.R., Smith, K.L., et al., Mater. Res. Soc. Symp. Proc., 2007, vol. 985, CD-version, paper 0985-NN08-09.

  40. Whittle, K.R., Lumpkin, G.R., Blackford, M.G., et al., J. Solid State Chem., 2010, vol. 183, pp. 2416–2420.

    Article  CAS  Google Scholar 

  41. Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., and Ewing, R.Ch., Dokl. Earth Sci., 2012, vol. 443, no. 2, pp. 526–531.

    Article  CAS  Google Scholar 

  42. Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  43. PDFWIN-2, Int. Centre for Diffraction Data, Newton Square, PA (USA), 1999.

  44. Begg, B.D., Vance, E.R., Day, R.A., et al., Mater. Res. Soc. Symp. Proc., 1997, vol. 465, pp. 325–332.

    Article  CAS  Google Scholar 

  45. Begg, B.D. and Vance, E.R., Mater. Res. Soc. Symp. Proc., 1997, vol. 465, pp. 333–340.

    Article  CAS  Google Scholar 

  46. Begg, B.D., Vance, E.R., and Lumpkin, G.R., Mater. Res. Soc. Symp. Proc., 1998, vol. 506, pp. 79–86.

    Article  CAS  Google Scholar 

  47. Fortner, J.A., Kropf, A.J., Bakel, A.J., et al., Mater. Res. Soc. Symp. Proc., 2000, vol. 608, pp. 401–406.

    Article  CAS  Google Scholar 

  48. GOST (State Standard) R 50926-96: Solidified High-Level Waste. General Technical Requirements, Moscow: Izd. Standartov, 1996.

  49. Wang, S.X., Begg, B.D., Wang, L.M., et al., J. Mater. Res., 1999, vol. 14, no. 12, pp. 4470–4473.

    Article  CAS  Google Scholar 

  50. Laverov, N.P., Yudintsev, S.V., Yudintseva, T.S., et al., Geol. Ore Deposits, 2003, vol. 45, no. 6, pp. 423–451.

    Google Scholar 

  51. Sykora, R.E., Raison, P.E., and Haire, R.G., J. Solid State Chem., 2005, vol. 178, pp. 578–583.

    Article  CAS  Google Scholar 

  52. Lumpkin, G.R., Pruneda, M., Rios, S., et al., J. Solid State Chem., 2007, vol. 180, pp. 1512–1518.

    Article  CAS  Google Scholar 

  53. Laverov, N.P., Yudintsev, S.V., Velichkin, V.I., et al., Radiochemistry, 2009, vol. 51, no. 5, pp. 529–536.

    Article  CAS  Google Scholar 

  54. Stefanovsky, S.V., Yudintsev, S.V., and Myasoedov, B.F., Dokl. Chem., 2012, vol. 447, no. 2, pp. 296–299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Original Russian Text © S.V. Yudintsev, S.V. Stefanovsky, B.S. Nikonov, M.S. Nikol’skii, T.S. Livshits, 2015, published in Radiokhimiya, 2015, Vol. 57, No. 2, pp. 161–171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Stefanovsky, S.V., Nikonov, B.S. et al. Potential matrices for immobilization of the rare earth-actinide fraction of high-level waste in the REE2Zr2O7-REE2Ti2O7 system. Radiochemistry 57, 187–199 (2015). https://doi.org/10.1134/S1066362215020125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362215020125

Keywords

Navigation