Skip to main content
Log in

Composition and genesis of endogenous borates from the Pitkáranta ore field, Karelia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The borate mineralization of the Pitkáranta skarn field of Karelia is localized in metasomatically altered Proterozoic dolomites. In the contact aureole of rapakivi granites, the zoning of magnesian skarns includes spinel-diopside or fassaite skarns with syngenetic magnetite and spinel-forsterite calciphyres surrounded by periclase marbles, which confirms their hypabyssal genesis. Stringer-stockwork bodies developing in the brecciation zone at the roof show a primitive zoning consisting of an inner diopside and an outer forsterite calciphyre zone grading into a dolomitic marble. All these zones inherited the Ca/Mg ratio of the primary carbonate rocks. Rhythmically banded textures observed in the skarns and calciphyres of the deposits studied suggest their formation under thermodynamically disequilibrium conditions typical of hypabyssal metasomatites. Magnesium and magnesium-iron borates in marbles and calciphyres and beryllium borates in greisens were formed during the postmagmatic stage. Data are reported on the chemical composition and genesis of suanite, kotoite, ludwigite, hulsite, pertsevite, fluoborite, szaibelyite, and humites from the Hopunvaara, Klara, Lupikko, and Herberz deposits. The deficit of boron in magnesian borates is related to their endogenous hydration. Data on hambergites and berborite are given according to E.I. Nefedov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Trustedt, “Die Erzlagerstatten von Pitkäranta am Ladoga See,” Bull. Commis. Geol. Finl. 19, Part 5 (1907).

    Google Scholar 

  2. R. E. Liesegang, Geologische Diffusionen (Dresden und Leipzig, 1913).

  3. M. Saksela, “Zur Mineralogie und Enstonung der Pitkäranta Erze,” Bull. Commis. Geol. Finl. 154, 181–231 (1951).

    Google Scholar 

  4. R.A. Khazov, Metallogeny of the Ladoga-Botnic Geoblock of the Baltic Schield (Nauka, Moscow, 1982) [in Russia].

    Google Scholar 

  5. R. A. Khazov, Geological Features of the Tin Mineralization of the Northern Ladoga Region (Nauka, Leningrad, 1973) [in Russian].

    Google Scholar 

  6. S. F. Lugov and R. A. Khazov, “Geology of Tin-Bearing Districts and Deposits in the Pre-Riphean Fold Structures of the Northern Ladoga Region,” in Geology of Tin Deposits of the USSR (Nedra, Moscow, 1986), Vol. 2, No. 2, pp. 148–171 [in Russian].

    Google Scholar 

  7. S. M. Aleksandrov, Geochemistry of Boron and Tin in Magnesian-Skarn Deposits (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. V. I. Ivashchenko, Tin and Tungsten Skarn Mineralization in the Southern Baltic Shield (Nauka, Leningrad, 1987) [in Russian].

    Google Scholar 

  9. S. M. Aleksandrov, Geochemistry of Skarn and Ore Formation in Dolomites (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  10. S. M. Aleksandrov, “Assimilation of Metamorphic and Metasomatically Altered Carbonate Sequences by Granitic Magmas,” Geokhimiya, No. 11, 1398–1414 (1992).

  11. S. M. Aleksandrov, “Skarn Formation after Dolomites at the Contact of Granite Magmas,” Geokhimiya, No. 6, 801–820 (1993).

  12. P. Escola and A. Juurinen, “Fluoborite from Pitkaranta,” Bull. Commis. Geol. Finl. 157, 181–231 (1952).

    Google Scholar 

  13. E. I. Nefedov, “Magnesioborite-A New Mineral,” Mater. VSEGEI, Novaya Seriya, No. 45, 243–247 (1961).

  14. M. E. Mrose and M. Fleischer, “The Probable Identity of Magnesioborite with Suanite,” Am. Mineral. 48, 915–924 (1963).

    Google Scholar 

  15. E. I. Nefedov, “Berborite-A New Mineral,” Dokl. Akad. Nauk SSSR 174, 114–117 (1967).

    Google Scholar 

  16. E. I. Nefedov, “Mineralogy of the Pitkyaranta Deposit,” in “Ore Potential and Mineralogy of the Skarnoids of Southern Karelia and the Western Kola Peninsula” (VSEGEI, Leningrad, 1973) [in Russian].

    Google Scholar 

  17. S. M. Aleksandrov, V. L. Barsukov, and V. V. Shcherbina, Geochemistry of Endogenous Boron (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  18. R. V. Lobzova and N. N. Pertsev, “Finding of Kotoite in Marble from the Northern Ladoga Region,” Zap. Vses. Mineral. O-va 117, 348–351 (1988).

    Google Scholar 

  19. A. E. Lisitsyn, S. V. Malinko, and V. V. Rudnev, “Borates of Pitkyaranta: Distribution and Composition,” Mineral. Zh. 13(1), 49–60 (1991).

    Google Scholar 

  20. V. V. Rudnev, “Monoclinic Fe-Mg Oxyborates of the Hulsite Isomorphic Series,” Zap. Vseros. Mineral. O-va 125, 89–108 (1996).

    Google Scholar 

  21. S. M. Aleksandrov and M. A. Troneva, “Endogenic Orthoborates in Europe: Genesis and Composition,” Geokhimiya, No. 6, 639–656 (2002) [Geochem. Int. 40, 576–593 (2002)].

  22. S. M. Aleksandrov, “Phenomena of Self-Organization during the Progressive Metasomatism of Carbonate Rocks,” Geokhimiya, No. 9, 1323–1338 (1995).

  23. P. Glansdorf, and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley-Interscience, New York, 1971; Mir, Moscow, 1973).

    Google Scholar 

  24. G. Nikolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  25. S. M. Aleksandrov, “Endogenous Transformations of Kotoite in Calciphyres at Magnesian-Skarn Deposits of Boron,” Geokhimiya, No. 7, 733–752 (2007) [Geochem. Int. 45, 666–684 (2007)].

  26. S. M. Aleksandrov, “Genesis and Composition of Ore-Forming Magnesian Borates, Their Analogues, and Modifications,” Geokhimiya, No. 5, 492–512 (2003) [Geochem. Int. 41, 440–458 (2003)].

  27. I. Ya. Nekrasov, A. P. Grigor’ev, T. A. Grigor’eva, et al., Study of High-Temperature Borates (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  28. S. M. Aleksandrov, “Experimental Study of Kotoite Abyssophobity in the MgO-B2O3-H2O-CO2 System,” Geokhimiya, No. 12, 1879–1882 (1974).

  29. S. M. Aleksandrov, “Geochemical Features of the Endogenous Hydration of Magnesium Borates,” Geokhimiya, No. 6, (2008) [Geochem. Int. 46, 578–594 (2008)].

  30. W. Schreyer, T. Armbruster, H.-J. Bernhardt, and O. Medenbach, “Pertsevite, a New Silicatian Magnesioborate Mineral with an End-Member Composition Mg2BO3F, in Kotoite Marble from East of Verkhoyansk, Sakha-Yakutia, Russia,” Eur. J. Mineral. 15, 1007–1018 (2003).

    Article  Google Scholar 

  31. S. M. Aleksandrov and M. A. Troneva, “Heterovalent Isomorphism in the Magnesium-Iron Borates,” Geokhimiya, No. 8, 862–876 (2008) [Geochem. Int. 46, 800–813 (2008)].

  32. N. N. Pertsev, W. Schreyer, T. Armbruster, et al., “Alumino-Magnesiohulsite, a New Member of Hulsite Group, in Kotoite Marble East of Verkhoyansk, Sakha-Yakutia, Russia,” Eur. J. Mineral. 16, 151–161 (2004).

    Article  Google Scholar 

  33. S. M. Aleksandrov, M. A. Troneva, and G. E. Kuril’chikova, “Boron-Tin Mineralization in Contact Aureole at Brooks Mountain, Alaska, the USA: Composition and Geochemical Evidence for Genesis,” Geokhimiya, No. 8, 852–868 (2000) [Geochem. Int. 38, 772–787 (2000)].

  34. S. M. Aleksandrov, M. A. Troneva, and G. E. Kuril’chikova, “Tin-Bearing Borates of Hulsite-Paigeite Series from Skarn Deposits of Northeastern Russia: Composition and Geochemical Evidence for Genesis,” Geokhimiya, No. 7, 746–759 (2000) [Geochem. Int. 38, 676–688 (2000)].

  35. G. Yang, Z. Peng, and Z. Pan, “Magnesiohulsite-A New Tin-Rich Borate Mineral,” Acta Mineral. Sinica 5(1), 95–101 (1985).

    Google Scholar 

  36. J. D. Dana, E. S. Dana, C. Palache, G. Berman, and C. Frondel, Dana’s System of Mineralogy (Wiley, New York, 1951; Inostrannaya Literatura, Moscow, 1953).

    Google Scholar 

  37. F. DeVito and A. Ordway, “The Jensen Quarry, Riverside County, California,” Mineral. Record 15(5), 273–290 (1984).

    Google Scholar 

  38. Mineralogy of Hydrothermal Beryllium Deposits, Ed. by A. I. Ginzburg (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  39. A. P. Grigor’ev, A. A. Brovkin, and I. Ya. Nekrasov, “On a New Asharite Variety,” Dokl. Akad. Nauk SSSR, No. 4, 937–940 (1963).

  40. V. A. Zharikov and B. I. Omel’yanenko, “Some Problems of the Study of Host Rock Alteration in Connection with Metallogenic Studies,” in Investigation of Regularities in the Localization of Mineralization during Metallogenic Studies of Ore Districts (Nedra, Moscow, 1965), pp. 119–194 [in Russian].

    Google Scholar 

  41. S. M. Aleksandrov and V. G. Senin, “Genesis, Composition, and Evolution of Sulfide Mineralization in Magnesian Skarns,” Geokhimiya, No. 6, 614–633 (2005) [Geochem. Int. 43, 559–577 (2005)].

  42. E. I. Nefedov, W. I. Griffin, and R. Kristiansen, “Minerals of the Schoenfliesite-Wickmanite Series from Pitkäranta, Karelia, U.S.S.R,” Can. Mineral. 15, 437–445 (1977).

    Google Scholar 

  43. S. M. Aleksandrov, “Gold Behavior during Endogenic and Supergene Alterations of Sulfides in Magnesian Skarns,” Geokhimiya, No. 2, 180–198 (2007) [Geochem. Int. 45, 152–169 (2007)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Aleksandrov.

Additional information

Original Russian Text © S.M. Aleksandrov, M.A. Troneva, 2009, published in Geokhimiya, 2009, No. 9, pp. 972–987.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, S.M., Troneva, M.A. Composition and genesis of endogenous borates from the Pitkáranta ore field, Karelia. Geochem. Int. 47, 914–929 (2009). https://doi.org/10.1134/S0016702909090055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909090055

Keywords

Navigation