Skip to main content
Log in

An experimental study of Cl and S distribution between sodalite and fluid

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

S and Cl distribution between sodalite and fluid was experimentally studied at temperatures of 300–800°C and pressure of 0.5–3 kbar. It is demonstrated that S is preferably distributed into fluid in equilibrium with sodalite of the composition X SodS > 0.05 throughout the whole temperature range. The distribution of S in the sodalite-fluid system is nonideal. An equation (derived from experimental data) is presented for evaluating the S mole fraction in fluid from the composition of sodalite at a known temperature. The S mole fractions in the fluid are evaluated for sodalite assemblages from nepheline syenites of the Lovozero Massif as being within the range of 0.036–0.23. The S mole fraction in the fluid is proved to increase with increasing mineral formation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Kotel’nikov, V. Yu. Chevychelov, N. I. Suk, et al., “Estimate of Fluid Composition during Formation of the Lovozero Alkali Massif from Sodalite-Bearing Assemblages: Evidence from Experimental Data,” in Proceedings of 14th Russian Conference on Experimental Mineralogy, Chernogolovka, Russia, 2001 (IEM RAN, Chernogolovka, 2001), p. 262 [in Russian].

    Google Scholar 

  2. A. R. Kotel’nikov, Z. A. Kotel’nikova, I. M. Romanenko, et al., “Stability of Sulfate-Sodalite (Nosean) under Hydrothermal Conditions,” Geokhimiya, No. 9, 983–991 (2004) [Geochem. Int. 42, 862–869 (2004)].

  3. L. L. Perchuk, Thermodynamic Regime of Deep-Seated Petrogenesis (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  4. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Silicates. Framework Silicates (Longman, Londo, 1963; Mir, Moscow, 1966), Vol. 4.

    Google Scholar 

  5. V. K. Gerasimovskii, V. P. Volkov, L. N. Kogarko, et al., Geochemistry of the Lovozero Alkaline Massif (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  6. A. P. Khomyakov, Mineralogy of Ultra-Agpaitic Alkaline Rocks (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  7. A. R. Kotel’nikov and L. V. Zhornyak, “Stability of NaCl-Sodalite under Hydrothermal Conditions,” Geokhimiya, No. 12, 1809–1812 (1994).

  8. A. R. Kotel’nikov, “Study of Stability of Sulfur-Bearing Scapolite under Hydrothermal Conditions,” Geokhimiya, No. 7, 987–996 (1986).

  9. L. L. Perchuk and I. D. Ryabchikov, Phase Correspondence in Mineral Systems (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  10. A. R. Kotel’nikov, A. M. Koval’skii, N. I. Suk, et al., “Experimental Study of Isomorphous Substitutions (2Cl ⇆ SO 2−4 )) in the Sodalite-Nosean Join,” in Proceedings of Annual Session of Scientific School ìAlkaline Magmatism of the Earth “(GEOKhI RAN, Moscow, 2002), p. 56 [in Russian].

    Google Scholar 

  11. A. R. Kotel’nikov, A. M. Koval’skii, and N. I. Suk, “Experimental Study of Sodalite Solid Solutions with Chlorine-Sulfur Isomorphic Anion Substitution,” Geokhimiya, No. 6, 599–613 (2005) [Geochem. Int. 43, 544–558 (2005)].

  12. C. W. Burnham, “Least-Squares Refinement of Crystallographic Lattice Parameters for IBM PC/XT/AT and Compatibles,” Harward University. Cambridge MA 02138, (19991).

  13. A. V. Chichagov, “Information-Calculating System on Crystal Structure Data of Minerals (MINCRYST),” Materials Science Forum, 166–169 (1994) Trans. Tech. Publ., 187–192 (1994).

  14. M. I. Ravich, “Aqueous-Salt Systems at Elevated Temperatures and Pressures,” (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  15. S. Sourirajan and G. C. Kennedy, “The System H2O-NaCl at Elevated Temperatures and Pressures,” Am. J. Sci. 260, 115–141 (1962).

    Google Scholar 

  16. R. J. Bodnar, C. W. Burnham, and M. S. Sterner, “Synthetic Fluid Inclusions in Natural Quartz. III. Determination of Phase Equilibrium Properties in the System H2O-NaCl To 1000°C and 1500 Bars,” Geochim. Cosmochim. Acta 49, 1861–1873 (1985).

    Article  Google Scholar 

  17. M. V. Valyashko, “Phase Equilibria and Properties of Hydrothermal Systems,” (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  18. K. A. Vlasov, M. V. Kuz’menko, and E. M. Es’kova, Lovozero Alkaline Massif (Akad. Nauk SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  19. N. A. Eliseev and E. E. Fedorov, “Lovozero Pluton and Its Deposits,” Tr. Labor. Dokembriya Akad. Nauk SSSR, vyp. 1 (1953).

  20. K. V. Bussen and A. S. Sakharov, Geology of the Lovozero Tundars (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  21. V. N. Zyryanov, Phase Correspondence in the Alkali Feldspar and Feldspathoid Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  22. H. Nekvasil, “Ternary Feldspar/Melt Equilria; a Review,” in Feldspars and their Relations, Ed. by I. Parsons, NATO series, 421 (1991).

  23. V. I. Ustinov, A. R. Kotel’nikov, and V. A. Grinenko, “Temperature Range for the Formation of Sodalite-Bearing Assemblages,” Geokhimiya, No. 2, 230–232 (2006) [Geochem. Int. 44, 199–201 (2006)].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.R. Kotel’nikov, V.I. Tikhomirova, Z.A. Kotel’nikova, N.I. Suk, A.M. Koval’skii, 2009, published in Geokhimiya, 2009, No. 6, pp. 603–612.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotel’nikov, A.R., Tikhomirova, V.I., Kotel’nikova, Z.A. et al. An experimental study of Cl and S distribution between sodalite and fluid. Geochem. Int. 47, 568–577 (2009). https://doi.org/10.1134/S0016702909060032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909060032

Keywords

Navigation