Skip to main content
Log in

Liquid Immiscibility in Fluid–Magmatic Systems: An Experimental Study

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Liquid immiscibility was studied in melting experiments in the system trachyrhyolite–water ± salt (NaF, Na2CO3) conducted at parameters imitating those of the volcanic process. The indicator components were La, Nb, Sr, W, Mo, Cr, Fe, Rb, and Cs. The experimental runs were carried out in a high gas pressure apparatus. At 1200ºC and 5 kbar, melting, homogenization, and melt saturation with fluid components occurred. A decrease in the PT parameters to 1000°C and 1 kbar led to the onset of liquid immiscibility in the form of droplets in the melt matrix. The composition of the droplets is similar to that of the melt matrix and differs from the latter only in concentrations of water, indicator components, and proportions of alkaline and alkali-earth elements. In the presence of salt (NaF), the melt exsolved into immiscible silicate and salt melts. No liquid immiscibility was detected when Na carbonate was added to the melt, but its agpaitic coefficient increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Angel, R.J., Feldspars at high pressure, Feldspars and their Reactions, Parsons, I., Eds., Dodrecht, Boston, London: Kluwer Academic Publishers, 1994, pp. 271–312.

    Google Scholar 

  2. Babichev, A. P., Babushkina, N. A., Bratkovskii, A. M., et al., Fizicheskie velichiny. Spravochnik (Physical Values. A Reference Book), Grigor’ev, I.S, Meilikhov, E.Z, Eds., Moscow: Energoatomizdat, 1991.

  3. Belyankin, D.S., Spherulitic in the technical glass and some ball-like segregations in igneous rocks, Izbrannye trudy (Selected Works), Moscow: Izd. AN SSSR, 1956, vol. 2. pp. 119–131.

    Google Scholar 

  4. Betekhtin, A.G., Kurs mineralogii (Course of Mineralogy), Moscow: Gosgeolizdat, 1951.

  5. Borodulin, G.P., Chevychelov, V.Yu., Zaraiskii, G.P., Experimental study of partitioning of tantalum, niobium, manganese, and fluorine between aqueous fluoride fluid and granitic and alkaline melts, Dokl. Earth Sci., 2009, vol. 427, pp. 868–873.

    Article  Google Scholar 

  6. Chevychelov, V.Yu., Borodulin, G.P., Zaraisky, G.P., Solubility of Columbite, (Mn,Fe)(Nb,Ta)2O6, in Granitoid and Alkaline Melts at 650–850°C and 30–400 MPa: An Experimental Investigation, Geochem. Int., 2010, vol. 48, no. 5, pp. 456–464.

    Article  Google Scholar 

  7. Dingwell, D.B., Harris, D.M., and Scarfe, C.M., The solubility of H2O in melts in system SiO2–Al2O3–Na2O–K2O at 1 to 2 kbars, J. Geol., 1984, vol. 92, pp. 387–395.

    Article  Google Scholar 

  8. Dingwell, D.B., Holtz, F., and Behrens, H., The solubility of H2O in peralkaline and peraluminous granitic melts, Am. Mineral., 1997, vol. 82, pp. 434–437.

  9. Encheva, S. and Yanev, Y., Zeolitized inclusions in trachyrhyolitic spheruloids of the perlite deposit Golobradovo (Studen Kladenets Oligocene Volcano, Eastern Rhodopes), VII International Symposium “Mineral Diversity: Research and Preservation,” Sofia: Earth and Man National Museum, 2015, pp. 177–184.

  10. Ewart, A., Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, central volcanic region, New Zealand, Mineral. Mag., 1971, vol. 38, pp. 424–434.

    Article  Google Scholar 

  11. Genezis perlita (Perlite Genesis), Znamenskii, V.S., Ed., Moscow: Nauka, 1992.

  12. Gramenitskii, E.N., Shchekina, T.I., and Chekhovskikh, M.M., Experimental data on a limited immiscibility in the scheelite–povellite isomorphous series, Geokhimiya, 1980, no. 8, pp. 1158–1164.

  13. Gramenitskii, E.N., Shchekina, T.I., and Sergeeva, N.E., Electron microprobe study of synthetic minerals of the scheelite–povellite series, Dokl. Akad. Nauk SSSR, 1979a, vol. 249, no. 3, pp. 684–687.

    Google Scholar 

  14. Gramenitskii, E.N., Shchekina, T.I., and Chekhov-skikh, M.M., Equilibria of molybdoscheelite–aqueous–salt solutions, Geokhimiya, 1979b, no. 10, pp. 1566–1576.

  15. Holtz, F., Behrens, H., Dingwell, D.B., and Taylor, R.P., Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar, Chem. Geol., 1992, vol. 96, pp. 289–302.

    Article  Google Scholar 

  16. Hunt, J.D. and Manning, C.E., A thermodynamic model for the system SiO2–H2O near the upper critical end point based on quartz solubility experiments at 500–1100°c and 5–20 kbar, Geochim. Cosmochim. Acta, 2012, vol. 86, pp. 196–213.

    Article  Google Scholar 

  17. Johannes, W. and Holtz, F., Petrogenesis and Experimental Petrology of Granitic Rocks, Berlin, Heidelberg: Springer-Verlag, 1996.

    Book  Google Scholar 

  18. Kalugin, V.M., Role of Immiscible Splitting during Crystallization of Natural and Technolgenic Aluminosilicate Melts, Extended Abstract of Cand. (Geol.-Min.) Dissertation, Novosibirsk: OIGGM SO RAN, 2002.

  19. Kennedy, G.C., A portion of the system silica–water, Econ. Geol., 1950, vol. 45, pp. 629–653.

    Article  Google Scholar 

  20. Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.S., The upper three–phase region in the system SiO2–H2O, J. Amer. Sci., 1962, vol. 260, no. 7, pp. 501–521.

    Article  Google Scholar 

  21. Kotelnikov, A.R., Suk, N.I., Encheva, Sv., et al., Liquid immiscibility in the fluid–magmatic systems of P–Q type (experimental study), Dokl. VIII Mezhdunarodnogo simpoziuma “Mineral’noe raznoobrazie – issledovanie i sokhranenie”, (Reports of the 8th International Symposium on Mineral Diversity: Study and Preservation, 2015, Sofiya, Bulgaria), Sofiya: Natsional’nyi muzei “Zemlya i lyudi”. Fond “Zemlya i lyudi”, 2016, pp. 7–17.

  22. Kotelnikova Z.A. and Kotelnikov A.R. Experimental Study of Heterogeneous Fluid Equilibria in Silicate–Salt–Water Systems, Geol. Rudn. Deposits, 2010, vol. 52, no. 2, pp. 154–166.

    Article  Google Scholar 

  23. Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A., et al., Investigation of liquid immiscibility in fluid-magmatic systems, Exp. Geosci., 2017, vol. 23, no. 1, pp. 117–120.

    Google Scholar 

  24. Koster van Groos, A.F. and Wyllie, P.J., Melting relationships in the system NaAlSi3O8–NaCl–H2O at 1 kilobar pressure with petrological applications, J. Geol., 1969, vol. 77, no. 5, pp. 581–605.

    Article  Google Scholar 

  25. Mazurin O.V., Totesh A.S., Strel’tsina, M.V., et al., Teplovoe rasshirenie stekla (Thermal Expansion of Glass), Leningrad: Nauka, 1969.

  26. Morey, G.W. and Chen, W.T., Pressure-temperature curves in some systems containing water and salt, J. Am. Chem. Soc., 1956, vol. 78, no. 16, pp. 4249–4252.

    Article  Google Scholar 

  27. Nasedkin, V.V., Vodosoderzhashchie vulkanicheskie stekla kislogo sostava, ikh genezis i izmeneniya (Water-Bearing Volcanic Glasses of Felsic Composition, their Genesis, and Alteration), Moscow: AN SSSR, 1963.

  28. Petrograficheskie kriterii likvatsii v kislykh lavakh (Petrographic Criteria of Liquation in Felsic Lavas), Moscow: AN SSSR, 1963.

  29. Ravich, M.I., Vodno-solevye sistemy pri povyshennykh temperaturakh i davleniyakh (Aqueous–Salt Systems at Elevated Temperatures and Pressures), Moscow: Nauka, 1974.

  30. Reed, S.J.B., Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, Cambridge: Cambridge University Press, 2005.

  31. Roedder, E., Silicate liquid immiscibility in magmas, The Evolution of the Igneous Rocks. 50th Anniversary Perspectives, Yoder, H.S., Ed. Princeton: Princeton University Press, 1979, pp. 15–57.

    Google Scholar 

  32. Salova, T.P., Simakin, A.G., and Epel’baum, M.B., Conditions of formation of spherulites in obsidian by the example of the Kecheldag Deposit, Armenia, Zap. Vsesoyuzn. Mineral. O-va, 1990, no. 4, pp. 12–17.

  33. Sowerby, J.R. and Keppler, H., The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 32–37.

    Article  Google Scholar 

  34. Suk, N.I., Zhidkostnaya nesmesimost' v shchelochnykh magmaticheskikh sistemakh (Liquid Immiscibility in Alkaline Magmatic Systems), Moscow: KDU, “Universitetskaya kniga”, 2017.

  35. Suk, N.I., Behavior of ore elements (W, Sn, Ti, and Zr) in layered immiscible silicate–salt systems, Petrology, 1997, vol. 5, no. 1, pp. 20–27.

    Google Scholar 

  36. Suk, N.I., Experimental study of liquid immiscibility in the fluid–magmatic silicate systems containing Ti, Nb, Sr, REE, and Zr, Petrology, 2012, vol. 20, no. 2, pp. 138–146.

    Article  Google Scholar 

  37. Tanton, T.L., Evidence of liquid immiscibility in a silicate magma, Agata Point, Ontario, J. Geol., 1925, vol. 33, pp. 629–641.

    Article  Google Scholar 

  38. Volyanyuk, N.Ya., Vulkanicheskie stekla Mukhor-Taly i svyazannye s nimi sharovye obrazovaniya (Volcanic Glasses of Mukhor-Taly and Related Spherulitic Segregations), Moscow: Nauka, 1972.

  39. Yanev, Y., Characterization of volcanic glasses from the eastern Rhodopes, Bulgaria,/ 2nd International Conference on Natural Glasses, Prague, 1987, pp. 129–138.

  40. Yanev, Y., Petrology of Golobradovo perlite deposit, eastern Rhodopes, Geochem. Mineral. Petrol., 2003, vol. 40, pp. 1–20.

    Google Scholar 

  41. Zharikov, V.A., Osnovy fizicheskoi geokhimii (Principles of Physical Geochemistry), Moscow: MGU, 2005.

  42. Zharikov, V.A., Osnovy fiziko-khimicheskoi petrologii (Principles of Physicochemical Petrology), Moscow: MGU, 1976.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 15-05-03393.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Kotelnikov, N. I. Suk or Z. A. Kotelnikova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikov, A.R., Suk, N.I., Kotelnikova, Z.A. et al. Liquid Immiscibility in Fluid–Magmatic Systems: An Experimental Study. Petrology 27, 186–201 (2019). https://doi.org/10.1134/S0869591119020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119020048

Keywords:

Navigation