Skip to main content
Log in

Deep-seated pegmatites of the Emiytas mafic-ultramafic complex on Big Lyakhov Island, New Siberian Islands, and their age: 40Ar/39Ar and SHRIMP data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Pegmatites of the Emiytas basic-ultrabasic metamorphic complex have a granodiorite-granite composition. Their genetic relations with the host amphibolites follow from the low initial 87Sr/86Sr ratios of 0.7028 and from the P-T conditions (650°C and 10 kbar), which are close to those of the host rocks. Amphibole, biotite, and muscovite megacrysts analyzed by the 40Ar/39Ar method yielded plateau ages of 209.7 ± 0.9, 203.0 ± 0.9, and 178.5 ± 1.5 Ma, respectively. The former two minerals contain excess Ar, whereas the K-Ar system of the muscovite is undisturbed. The cooling of the complex to the closure temperature of this system was likely controlled by its exhumation to a shallower depth level. Zircons from the Emiytas pegmatites occur as polyhedral equant crystals with weakly contrasting sectorial zoning, very low concentrations of U (4–8 ppm in the enriched domains), and low Th/U ratios (0.002–0.003), which suggest that the mineral crystallized at significant depth in the presence of fluid. Tentative SHRIMP II measurements (five analyses) yielded a zircon age of 202 ± 17 Ma. The applying a specialized approach to the analysis of young low-U zircons on an ion probe is discussed. In spite of the small number of analyses, new geochronologic data leave no doubt that the crystallization age of the pegmatites is Late Triassic-Early Jurassic and invalidate earlier ideas that the Emiytas complex is Precambrian-Early Paleozoic. This conclusion makes the Emiytas amphibolites to be one of the various oceanic and suprasubduction complexes related to the Mesozoic South Anyui suture, which is important for reconstructions of the tectonic evolution of the East Siberian Arctic shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Samusin and K. N. Belousov, State Geological Map of the USSR. Scale 1: 200000. Series Novosibirsk Islands. Sheets S-53-XVI, XVII, XXIII; S-54-XIV–XVI, XX–XXIIV, XXVII–XXX. Explanatory Notes, Ed. by A. M. Ivanov (Soyuzgeolfond, Moscow, 1985) [in Russian].

    Google Scholar 

  2. S. S. Drachev and L. A. Savostin, “Ophiolites of Bol’shoi Lyakhov Island, New Siberian Islands,” Geotektonika, No. 3, 98–107 (1993).

  3. A. B. Kuz’michev, E. V. Sklyarov, and I. G. Barash, “Pillow Basalts and Blueschists on Bol’shoi Lyakhovsky Island (the New Siberian Islands)-Fragments of the South Anyui Oceanic Lithosphere,” Geol. Geofiz. 46(12), 1367–1381 (2005)

    Google Scholar 

  4. A. B. Kuz’michev, A. V. Solov’ev, V. E. Gonikberg, et al., “Mesozoic Syncollision Siliciclastic Sediments of the Bol’shoi Lyakhov Island (New Siberian Islands),” Stratigr. Geol. Correlation 14(1), 33–53 (2006) [Stratigr. Geol. Correlation 14, 30–48 (2006)].

    Google Scholar 

  5. V. K. Dorofeev, M. G. Blagoveshchenskii, A. N. Smirnov, and V. I. Ushakov, New Siberian Islands. Geological structure and Metallogeny, Ed. by V. I. Ushakov (VNIIOkeangeologiya, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  6. D. A. Vol’nov, B. G. Lopatin, D. S. Sorokov, et al., State Geological Map of the Russian Federation. Scale 1: 1000000 (New Series). Sheet S-53-55-New Siberian Islands. Explanatory Notes (Izd-vo VSEGEI, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  7. Placer Deposits of the Lyakhov Tin District, Ed. by I. S. Gramberg and V. I. Ushakov (VNIIOkeangeologiya, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  8. P. W. Layer, R. Newberry, K. Fujita, et al., “Tectonic Setting of the Plutonic Belts of Yakutia, Northeast Russia, Based on 40Ar/39Ar Geochronology and Trace Element Geochemistry,” Geology 29, 167–170 (2001).

    Article  Google Scholar 

  9. M. M. Ermolaev, “Geological and Geomorphological Essay of Bol’shoi Lyakhov Island,” in Polar Geophysical Station on Bol’shoi Lyakhov Island. Part 1. Organization and Work of the Station in 1927–1930 (AN SSSR-VAI, St. Petersburg, 1932), pp. 147–228 [in Russian].

    Google Scholar 

  10. V. N. Voitsekhovskii and D. S. Sorokov, “Precambrian Rocks of Bol’shoi Lyakhov Island, New Siberian Islands,” Inform. Byull. NIIGA, No. 4, 4–7 (1957).

  11. V. A. Vernikovskii, Geodynamic Evolution of the Taimyr Folded System (Izd. SO RAN, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  12. B. R. Rowley and A. L. Lottes, “Plate-Kinematic Reconstructions of the North Atlantic and Arctic: Late Jurassic to Present,” Tectonophysics 155, 73–120 (1988).

    Article  Google Scholar 

  13. B. A. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Palaeozoic Rocks of Northern Chukotka Peninsula, Russian Far East: Implications for the Tectonics of the Arctic Region,” Tectonics 18, 977–1003 (1999).

    Article  Google Scholar 

  14. E. L. Miller and J. Toro, J. Gehrels, et al., “New Insights into Arctic Paleogeography and Tectonics from U-Pb Detrital Zircon Geochronology,” Tectonics 25, TC3013 (2006).

    Article  Google Scholar 

  15. A. B. Kuzmichev and V. L. Pease, “Siberian Trap Magmatism on the New Siberian Islands: Constraints for East Arctic Mesozoic Plate Tectonic Reconstructions,” J. Geol. Soc. 164, 959–968 (2007).

    Article  Google Scholar 

  16. A. B. Kuzmichev, V. Gonikberg, O. Zamzhitsky, et al., “The Metamorphic Complex of Big Lyakhov Island (New Siberian Islands): Not a Precambrian Basement by the Early Mesozoic Layered Intrusion,” in Fourth International Conference on Arctic Margins, Dartmouth, Canada, 2003 (Dartmouth, 2003), No. 12.

  17. V. I. Fonarev, A. A. Graphchikov, and A. N. Konilov, “A Consistent System of Geothermometers for Metamorphic Complexes,” Int. Geol. Rev. 33, 743–783 (1991).

    Article  Google Scholar 

  18. D. J. Henry, C. V. Guidotti, and J. A. Thomson, “The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms,” Am. Mineral. 90, 316–328 (2005).

    Article  Google Scholar 

  19. C.-M. Wu and G. Zhao, “Recalibration of the Garnet-Muscovite (GM) Geothermometer and the Garnet-Muscovite-Plagioclase-Quartz (GMPQ) Geobarometer for Metapelitic Assemblages,” J. Petrol. 47, 2357–2368 (2006).

    Article  Google Scholar 

  20. E. Auzanneau, D. Vielzeuf, and M. W. Schmidt, “Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust,” Contrib. Mineral. Petrol. 152, 125–148 (2006).

    Article  Google Scholar 

  21. T. Holland and J. Blundy, “Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  22. I. V. Lavrent’eva and L. L. Perchuk, “Experimental Study of Amphibole-Garnet Equilibria (Calcium-Free System),” Dokl. Akad. Nauk 306, 173–175 (1989).

    Google Scholar 

  23. J. L. Anderson and D. R. Smith, “The Effects of Temperature and fO2on the Al-in-Hornblende Barometer,” Am. Mineral. 80, 549–559 (1995).

    Google Scholar 

  24. O. V. Avchenko and M. M. Kuznetsova, “Mineral Geobarometers,” Tikhookean. Geol., No. 1, 95–100 (1988).

  25. L. L. Perchuk and I. V. Lavrent’eva, “Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite,” Adv. Phys. Geochem. 3, 199–239 (1983).

    Google Scholar 

  26. M. J. Holdaway and S. M. Lee, “Fe-Mg Cordierite Stability in High-Grade Pelitic Rocks Based on Experimental, Theoretical, and Natural Observations,” Contrib. Mineral. Petrol. 63, 175–198 (1977).

    Article  Google Scholar 

  27. V. A. Ponomarchuk, Yu. N. Lebedev, A. V. Travin, et al., “Application of Fine Magnetic-Separation Technology in the K-Ar, 40Ar-39Ar, Rb-Sr Methods for Dating Rocks and Minerals,” Geol. Geofiz. 39, 55–64 (1998).

    Google Scholar 

  28. V. A. Ponomarchuk, V. I. Sotnikov, Yu. N. Lebedev, and V. Yu. Kiseleva, “Precision Limiting Factors in the40Ar-39Ar Geochronological Analysis of Ore Deposits: Evidence from the Shakhtama Cu-Mo Deposit, East Transbaikalia,” in Applied Geochemistry. Issue 4. Analytical Studies (IMGRE, Moscow, 2003), pp. 113–127 [in Russian].

    Google Scholar 

  29. R. H. Steiger and E. Jager, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

  30. R. J. Fleck, J. F. Sutter, and D. H. Elliot, “Interpretation of Discordant 40Ar/39Ar Age Spectra of Mesozoic Tholeiites from Antarctica,” Geochim. Cosmochim. Acta 41, 15–32 (1977).

    Article  Google Scholar 

  31. A. P. Dickin, Radiogenic Isotope Geology (University Press, Cambridge, 2005).

    Google Scholar 

  32. S. Kelley, “Excess Argon in K-Ar and Ar-Ar Geochronology,” Chem. Geol. 188, 1–22 (2002).

    Article  Google Scholar 

  33. R. L. Cumbest, E. L. Johnson, and T. C. Onstott, “Argon Composition of Metamorphic Fluids: Implications for 40Ar/39Ar Geochronology,” Geol. Soc. Am. Bull. 106, 942–951 (1994).

    Article  Google Scholar 

  34. F. Corfu, J. M. Hanchar, P. W. O. Hoskin, and P. Kinny, “Atlas of Zircon Textures,” in Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 469–500 (2000).

  35. G. Vavra, D. Gebauer, R. Schmid, and W. Compston, Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study,” Contrib. Mineral. Petrol. 122, 337–358 (1996).

    Article  Google Scholar 

  36. I. S. Williams, U-Th-Pb Geochronology by Ion Microprobe,” in M. A. McKibben, W. C. Shanks III, and W. I. Ridley, Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Rev. Econ. Geol. 7, 1–35 (1998).

  37. M. Wiedenbeck, P. Alle, F. Corfu, et al., “Three Natural Zircon Standards for U-Th-Pb, Lu-Hf Trace Element and REE Analysis,” Geostand. Newslett. 19, 1–3 (1995).

    Article  Google Scholar 

  38. T. R. Ireland and I. S. Williams, “Considerations in Zircon Geochronology by SIMS,” in Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 215–241 (2003).

  39. K. R. Ludwig, “Squid 1.02,” Berkley Geochronol. Center, Spec. Publ. No. 2, (2001).

  40. J. Stacey and J. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).

    Article  Google Scholar 

  41. P. W. O. Hoskin and U. Schaltegger, “The Composition of Zircon of Igneous and Metamorphic Petrogenesis,” in Zircon, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 27–62 (2003).

  42. K. R. Ludwig, “Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel,” Berkley Geochronol. Center, Spec. Publ., No. 4 (2003).

  43. C. R. Bacon, H. M. Persing, J. L. Wooden, and T. R. Ireland, “Late Pleistocene Granodiorite beneath Crater Lake Caldera, Oregon, Dated by Ion Microprobe,” Geology 28, 467–470 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kuzmichev.

Additional information

Original Russian Text © A.B. Kuzmichev, V.A. Ponomarchuk, A.N. Konilov, I.P. Paderin, 2009, published in Geokhimiya, 2009, No. 2, pp. 197–209.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmichev, A.B., Ponomarchuk, V.A., Konilov, A.N. et al. Deep-seated pegmatites of the Emiytas mafic-ultramafic complex on Big Lyakhov Island, New Siberian Islands, and their age: 40Ar/39Ar and SHRIMP data. Geochem. Int. 47, 186–198 (2009). https://doi.org/10.1134/S0016702909020062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909020062

Keywords

Navigation