Skip to main content
Log in

Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Diamond crystallization from carbon solutions in compositionally variable melts of model eclogite with dolomite [CaMg(CO3)2], potassium carbonate (K2CO3), and multicomponent K-Na-Ca-Mg-Fe carbonates was studied at 7.0–8.5 GPa. Concentration barriers for the nucleation of the diamond were determined at a standard pressure of 8.5 GPa for variable proportions of silicate and carbonate components in the growth solutions. They correspond to 35, 65, and 40 wt % of silicate components for systems with dolomite, K2CO3, and carbonatites, respectively. At higher contents of silicates in silicate-carbonate melts, the nucleation of diamond phase ceases, but diamond crystallization on seed crystals continues and is accompanied by the spontaneous crystallization of thermodynamically unstable graphite. In melts of the albite (NaAlSi3O8)-K2CO3-C compositions, the concentration barrier of diamond nucleation at 8.5 GPa is up to 90–92 wt % of the albite component, and diamond growth on seeds was observed in albite-carbon melts. Using mineralogical and experimental data, we developed a model of mantle carbonate-silicate (carbonatite) melts as the main parental media for natural diamonds; it was shown that the composition of the silicate constituent of such parental melts is variable and corresponds to the mantle ultrabasic-basic series. With respect to concentration contributions and dominant role in the genesis of diamond in the Earth’s mantle, major (carbonate and silicate) and minor or admixture components were distinguished. The latter include both soluble in carbonate-silicate melts (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble components (sulfides, metals, and carbides). Both major and minor components may affect the position of the concentration barriers of diamond nucleation in natural parent media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Livtin, “High Pressure Mineralogy of Diamond Genesis,” in Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Am. Spec. Pap. 421, 83–103 (2007).

  2. Yu. A. Litvin and V. A. Zharikov, “Experimental Modeling of Diamond Genesis: Diamond Crystallization in Multicomponent Carbonate-Silicate Melts at 5–7 GPa and 1200–1570°C,” Dokl. Akad. Nauk 372(6), 808–811 (2000) [Dokl. Earth Sci. 372, 867–870 (2000)].

    Google Scholar 

  3. M. Schrauder and O. Navon, “Hydrous and Carbonatite Mantle Fluids in Fibrous Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58(2), 761–771 (1994).

    Article  Google Scholar 

  4. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle, (Nauka, Novosibirsk, 1974; Am. Geophys. Union, Washington, 1977).

    Google Scholar 

  5. Yu. A. Litvin, A. V. Shushkanova, and V. A. Zharikov, “Immiscibility of Sulfide-Silicate Melts in the Mantle: Role in the Syngenesis of Diamond and Inclusions (Based on Experiments at 7.0 GPa),” Dokl. Akad. Nauk 402(5), 656–660 (2005) [Dokl. Earth Sci. 402, 719–722 (2005)].

    Google Scholar 

  6. O. Navon, E. S. Izraeli, and O. Klein-BenDavid, “Fluid Inclusions in Diamonds—the Carbonatitic Connection,” in Proceedings of 8th Int. Kimberlite Conference, Victoria, Canada, 2003 (Victoria, 2003).

  7. M. Arima, K. Nakayama, M. Akaishi, et al., “Crystallization of Diamonds from a Silicate Melt of Kimberlite Composition in High-Pressure and High-Temperature Experiments,” Geology 21, 968–970 (1993).

    Article  Google Scholar 

  8. Yu. M. Borzdov, A. G. Sokol, Yu. N. Pal’yanov, et al., “The Study of Diamond Crystallization from Alkaline Silicate, Carbonate, and Carbonate-Silicate Melts,” Dokl. Akad. Nauk 366(4), 530–533 (1999) [Dokl. Earth Sci. 366, 578–581 (1999)].

    Google Scholar 

  9. A. F. Shatskii, Yu. M. Borzdov, A. G. Sokol, and Yu. N. Pal’yanov, “Features of Phase Formation and Crystallization in Ultrapotassic Carbonate-Silicate Systems with Carbon,” Geol. Geofiz. 43(10), 940–950 (2002).

    Google Scholar 

  10. Yu. N. Pal’yanov, A. G. Sokol, and N. V. Sobolev, “Experimental Modeling of Mantle Diamond-Forming Processes,” Geol. Geofiz. 46(12), 1290–1303 (2005).

    Google Scholar 

  11. V. Yu. Litvin, Yu. A. Litvin, and A. A. Kadik, “Diamond Syntheses from Silicate-Carbonate-Carbon Melts at 6–8.5 GPa: Limits of Diamond Formation and Forms of Dissolved Carbon,” Exp. Geosci. 11(1), 28–31 (2003).

    Google Scholar 

  12. Yu. A. Litvin, “On Formation Mechanism of Diamond in Metal-Carbon Systems,” Izv. Akad. Nauk SSSR, Ser. Neorgan. Mater. 4(2), 175–182 (1968).

    Google Scholar 

  13. Yu. A. Litvin and A. V. Spivak, “Rapid Growth of Diamondite at the Contact between Graphite and Carbonate Melt: Experiments at 7.5–8.5 GPa,” Dokl. Akad. Nauk 391(5), 673–677 (2003) [Dokl. Earth Sci. 391A, 888–891 (2003)].

    Google Scholar 

  14. G. Kurat and G. Dobosi, “Garnet and Diopside-Bearing Diamondites (Framesites),” Mineral. Petrol. 69, 143–159 (2000).

    Article  Google Scholar 

  15. Yu. A. Litvin, A. P. Jones, A. D. Beard, et al., “Crystallization of Diamond and Syngenetic Minerals in Melts of Diamondiferous Carbonatites of the Chagatai Massif, Uzbekistan: Experiment at 7.0 GPa,” Dokl. Akad. Nauk 381(4), 528–531 (2001) [Dokl. Earth Sci. 381, 1066–1069 (2001)].

    Google Scholar 

  16. A. V. Bobrov, Yu. A. Litvin, and F. K. Divaev, “Phase Relations and Diamond Synthesis in the Carbonate-Silicate Rocks of the Chagatai Complex, Western Uzbekistan: Results of Experiments at P = 4–7 GPa and T = 1200–1700°C,” Geokhimiya, No. 1, 49–60 (2004) [Geochem. Int. 42, 39–48 (2004)].

  17. Yu. A. Litvin, G. Kurat, and G. Doboshi, “Experimental Investigation of Diamondite Formation in Carbonate-Silicate Melts: Model Approximation to Natural Processes,” Geol. Geofiz. 46(12), 1304–1317 (2005).

    Google Scholar 

  18. Yu. N. Palyanov, V. S. Shatsky, A. G. Sokol, et al., “Crystallization of Metamorphic Diamond: An Experimental Modeling,” Dokl. Akad. Nauk 380(5), 671–675 (2001) [Dokl. Earth Sci. 381, 935–938 (2001)].

    Google Scholar 

  19. Yu. A. Litvin, A. V. Spivak, and Yu. A. Matveev, “Experimental Study of Diamond Formation in the Molten Carbonate-Silicate Rocks of the Kokchetav Metamorphic Complex at 5.5–7.5 GPa,” Geokhimiya, No. 11, 1191–1200 (2003) [Geochem. Int. 41, 1090–1098 (2003)].

  20. P. C. Marx, “Pyrrhotine and the Origin of Terrestrial Diamonds,” Mineral. Mag. 38, 636–638 (1972).

    Article  Google Scholar 

  21. S. E. Haggerty, “Diamond Genesis in Multiply Constrained Model,” Nature 320, 34–38 (1986).

    Article  Google Scholar 

  22. G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in Diamonds and Xenoliths from Kimberlite Pipes of Yakutia (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  23. Z. V. Spetsius, “Two Generations of Diamonds in the Eclogite Xenoliths,” in Proceedings of 7th Int. Kimberlite Conference, Cape Town, South Africa, 1999 (Red Roof Design, South Africa, 1999), Vol. 2, pp. 823–828.

    Google Scholar 

  24. Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The First Synthesis of Diamond in Sulfide-Carbon Systems: The Role of Sulfides in Diamond Genesis,” Dokl. Akad. Nauk 382(1), 106–109 (2002) [Dokl. Earth Sci. 382, 40–43 (2002)].

    Google Scholar 

  25. Yu. N. Pal’yanov, Yu. M. Borzdov, I. Yu. Ovchinnikov, and N. V. Sobolev, “Experimental Study of the Interaction between Pentlandite Melt and Carbon at Mantle PT Parameters: Condition of Diamond and Graphite Crystallization,” Dokl. Akad. Nauk 392(3), 388–391 (2003) [Dokl. Earth Sci. 392, 1026–1029 (2003)].

    Google Scholar 

  26. Yu. A. Litvin and V. G. Butvina, “Diamond-Forming Media in the System Eclogite-Carbonatite-Sulfide-Carbon: Experiments at 6.0–8.5 GPa,” Petrologiya 12(4), 426–438 (2004) [Petrology 12, 377–387 (2004)].

    Google Scholar 

  27. A. V. Shushkanova and Yu. A. Litvin, “Phase Relations during Melting of Diamond-Forming Carbonate-Silicate-Sulfide Systems,” Geol. Geofiz. 46(12), 1304–1317 (2005).

    Google Scholar 

  28. D. L. Hamilton and C. M. B. Henderson, “The Preparation of Silicate Composition by a Gelling Method,” Mineral. Mag. 38(282), 832–838 (1968).

    Article  Google Scholar 

  29. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, “Device of Toroid Type for High Pressure Generation,” High Temp.-High Press., No. 9, 637–639 (1977).

  30. Yu. A. Litvin, Physicochemical Studies of the Melting of Deep-Seated Materials of the Earth, (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  31. M. Eremets, High Pressure Experimental Methods (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  32. H. T. Hall, “Fixed Points near Room Temperature,” in Accurate Characterization of the High Pressure Environment, Ed. by E. C. Lloyd (Nat. Bur. Stand., Washington, 1971), U.S. Spec. Publ., No. 326 (1971).

    Google Scholar 

  33. C. S. Kennedy and G. C. Kennedy, “The Equilibrium Boundary between Graphite and Diamond,” J. Geophys. Res. 81(14), 2467–2470 (1976).

    Article  Google Scholar 

  34. A. V. Spivak and Yu. A. Litvin, “Diamond Syntheses in Multicomponent Carbonate-Carbon Melts of Natural Chemistry: Elementary Processes and Properties,” Diamond Relat. Mater., No. 13, 482–487 (2004).

  35. Yu. A. Litvin, L. T. Chudinovskikh, and V. A. Zharikov, “Crystallization of Diamond in the Na2Mg(CO3)2-K2Mg(CO3)2-C System at 8–10 GPa,” Dokl. Akad. Nauk 359(6), 818–820 (1998) [Dokl. Earth Sci. 359, 433–435 (1998)].

    Google Scholar 

  36. I. Martinez, J. Zhang, and R. J. Reeder, “In Situ X-Ray Diffraction of Aragonite and Dolomite CaMg(CO3)2 at High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite,” Am. Mineral. 81, 611–624 (1996).

    Google Scholar 

  37. Yu. A. Litvin and V. A. Zharikov, “Primary Fluid-Carbonatite Inclusions in Diamond: Experimental Modeling in the System K2O-Na2O-CaO-MgO-FeO-CO2 as a Diamond Formation Medium at 7–9 GPa,” Dokl. Akad. Nauk 367(3), 397–401 (1999) [Dokl. Earth Sci. 367, 801–805 (1999)].

    Google Scholar 

  38. Yu. A. Litvin, “On the Problem of Diamond Origin,” Zap. Vses. Mineral. O-va 98(1), 116–123 (1969).

    Google Scholar 

  39. Yu. A. Litvin and A. V. Spivak, “Growth of Diamond Crystals at 5.5–8.5 GPa in the Carbonate-Carbon Melt-Solutions as Chemical Analogues of Natural Diamond-Forming Media,” Materialovedenie, No. 3, 27–34 (2004).

  40. Yu. A. Litvin, V. Yu. Litvin, A. A. Kadik, and V. A. Zharikov, “Formation of Reaction Garnets during Melting of the MgCO3-CaCO3-NaAlSiO4-SiO2 System at 7.0 GPa,” Dokl. Akad. Nauk 406(1), 83–88 (2006) [Dokl. Earth Sci. 406, 41–45 (2006)].

    Google Scholar 

  41. M. B. Baker and P. J. Wyllie, “Liquid Immiscibility in a Nepheline-Carbonate System at 25 kbar and Implications for Carbonatite Origin,” Nature 346, 168–177 (1990).

    Article  Google Scholar 

  42. L. N. Kogarko, C. M. B. Hengerson, and H. Pacheko, “Primary Ca-Rich Carbonatite Magma and Carbonate-Silicate-Sulphide Liquid Immiscibility in the Upper Mantle,” Contrib. Mineral. Petrol. 121, 267–274 (1995).

    Article  Google Scholar 

  43. Glinnemann J., Kusaka K., Harris J.W. “Oriented Graphite Single-Crystal Inclusions in Diamond,” Z. Kristallogr. 218(11), 733–739 (2003).

    Article  Google Scholar 

  44. Yu. A. Litvin, F. Pineau, and M. Javoy, “Carbon Isotope Fractionation on Diamond Synthesis in Carbonatite-Carbon Melts of Natural Chemistry (Experiments at 6.5–7.5 GPa),” in Proceedings of 6th International Symposium on Applied Isotope Geochemistry, Prague, Czechia, 2005 (Prague, 2005), p. 143.

  45. O. Navon, “Diamond Formation in the Earth’s Mantle,” in Proceedings of 7th Int. Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 584–604.

    Google Scholar 

  46. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic Melts in Cuboid Diamonds from Udachnaya Kimberlite Pipe (Yakutia): Evidence from Vibrational Spectroscopy,” Mineral. Mag. 68(1), 61–73 (2004).

    Article  Google Scholar 

  47. H. O. A. Meyer, “Inclusions in Diamond in Mantle Xenoliths,” in Mantle Xenoliths, Ed. by P. H. Nixon, (Wiley, Chichester, 1987), pp. 501–523.

    Google Scholar 

  48. L. Taylor and M. Anand, “Diamonds: Time Capsules from the Siberian Mantle,” Chem. Erde 64, 1–74 (2004).

    Article  Google Scholar 

  49. E. S. Izraeli, M. Schrauder, and O Navon, “On the Connection between Fluid-and Mineral-Inclusions in Diamonds,” in Extended Abstracts of 7th Int. Kimberlite Conference, Cape Town, South Africa, 1998 (Cape Town, 1998), pp. 352–354.

  50. W. E. Sharp, “Pyrrhotite, a Common Inclusion in South African Diamonds,” Nature 211, 402–403 (1966).

    Article  Google Scholar 

  51. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Inclusions of Sulfides in Diamonds and Characteristics of Their Paragenesis,” Zap. Vses. Mineral. O-va 112(3), 300–310 (1983).

    Google Scholar 

  52. G. P. Bulanova, W. L. Griffin, C. G. Ryan, et al., “Trace Elements in Sulfide Inclusions from Yakutian Diamonds,” Contrib. Mineral. Petrol. 124, 111–125 (1996).

    Article  Google Scholar 

  53. G. P. Bulanova, “Formation of Diamond,” J. Geochem. Explor. 53, 1–23 (1995).

    Article  Google Scholar 

  54. A. Wang, J. D. Pasteris, H. O. A. Meyer, and M. L. Dele-Duboi, “Magnesite-Bearing Inclusion Assemblage in Natural Diamond,” Earth Planet. Sci. Lett. 141, 293–306 (1996).

    Article  Google Scholar 

  55. N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, et al., “Mineral Inclusions in Diamonds from the Sputnik Kimberlite Pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  56. S. V. Titkov, A. I. Gorshkov, Yu. P. Solodova, et al., “Mineral Microinclusions in Cubic Diamonds from the Yakutian Deposits Based on Analytical Electron Microscopy Data,” Dokl. Akad. Nauk 410(2), 255–258 (2006) [Dokl. Earth Sci. 410, 1101–1105 (2006)].

    Google Scholar 

  57. E. S. Izraeli, J. W. Harris, and O. Navon, “Brine Inclusions in Diamonds: A New Upper Mantle Fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  58. Yu. A. Litvin, “Alkaline-Chloride Components in Processes of Diamond Growth in the Mantle and High-Pressure Experimental Conditions,” Dokl. Akad. Nauk 389(3), 382–386 (2003) [Dokl. Earth Sci. 389A, 388–391 (2003)].

    Google Scholar 

  59. M. Akaishi and S. Yamaoka, “Crystallization of Diamond from C-O-H Fluid under High-Pressure and High-Temperature Conditions,” J. Cryst. Growth 209, 999–1003 (2000).

    Article  Google Scholar 

  60. S. Yamaoka, M. D. Shaji Kumar, M. Akaishi, and H. Kanda, “Reactions between Carbon and Water under Diamond-Stable High Pressure and High Temperature Conditions,” Diamond Relat. Mater. 9, 1480–1486 (2000).

    Article  Google Scholar 

  61. Yu. N. Pal’yanov, A. G. Sokol, A. F. Khokhryakov, et al., “Diamond and Graphite Crystallization in C-O-H Fluid at P-T Parameters of the Natural Diamond Formation,” Dokl. Akad. Nauk 375, 348–388 (2000) [Dokl. Earth Sci. 375, 1395–1398 (2000)].

    Google Scholar 

  62. A. G. Sokol, Yu. N. Pal’yanov, G. A. Pal’yanova, et al., “Diamond and Graphite Crystallization from C-O-H Fluids,” Diamond Relat. Mater. 10(12), 2131–2136 (2001).

    Article  Google Scholar 

  63. Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, and A. F. Khokhryakov, “Alkaline Carbonate-Fluid Melts as the Medium for the Formation of Diamonds in the Earth’s Mantle: An Experimental Study,” Lithos 60, 145–159 (2002).

    Article  Google Scholar 

  64. A. G. Sokol and Yu. N. Pal’yanov, “Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 2. An Analytical Review of Experimental Data,” Geokhimiya, No. 11, 1157–1172 (2004) [Geochem. Int. 42, 1018–1032 (2004)].

  65. M. Akaishi, “Effect of Na2O or H2O Addition to SiO2 on the Synthesis of Diamond from Graphite,” in Proceedings of 3rd Int. Symposium ISAM’96, Tsukuba, Japan, 1996 (NIRIM, Tsukuba, 1996), pp. 75–80.

    Google Scholar 

  66. R. H. Wentorf and H. P. Bovenkerk, “On the Origin of Natural Diamonds,” Astrophys. J. 134, 995–1005 (1961).

    Article  Google Scholar 

  67. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (NITs OIGGM SO RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  68. S. K. Simakov, “Redox State of Earth’s Upper Mantle Peridotites under the Ancient Cratons and Its Connection with Diamond Genesis,” Geochim. Cosmochim. Acta 62(10), 1811–1820 (1998).

    Article  Google Scholar 

  69. I. I. Fedorov, A. I. Chepurov, A. A. Chepurov, and A. V. Kuroedov, “Estimation of the Rate of Postcrystallization Self-Purification of Diamond from Metal Inclusions in the Earth’s Mantle,” Geokhimiya, No. 12, 1340–1344 (2005) [Geochem. Int. 43, 1235–1240 (2005)].

  70. A. A. Kadik, F. Pineau, Yu. A. Litvin, et al., “Formation of Carbon and Hydrogen Species in Magmas at Low Oxygen Fugacity,” J. Petrol. 45(7), 1297–1310 (2004).

    Article  Google Scholar 

  71. A. A. Kadik, Yu. A. Litvin, V. V. Koltashev, et al., “Solubility of Hydrogen and Carbon in Reduced Magmas of the Early Earth’s Mantle,” Geokhimiya, No. 1, 38–53 (2006) [Geochem. Int. 44, 33–47 (2006)].

  72. I. D. Ryabchikov, G. P. Brey, and V. K. Bulatov, “Carbonate Melts Equilibrated with Mantle Peridotites at 50 kbar,” Petrologiya 1, 189–194 (1993) [Petrology 1, 159–163 (1993)].

    Google Scholar 

  73. Yu. A. Litvin, “Mantle Hot Spots and Experiments up to 10 GPa: Alkaline Reactions, Carbonation of the Lithosphere, and New Diamond-Forming Systems,” Geol. Geofiz. 39, 1772–1779 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Original Russian Text © Yu.A. Litvin, V.Yu. Litvin, A.A. Kadik, 2008, published in Geokhimiya, 2008, No. 6, pp. 579–602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvin, Y.A., Litvin, V.Y. & Kadik, A.A. Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa. Geochem. Int. 46, 531–553 (2008). https://doi.org/10.1134/S0016702908060013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908060013

Keywords

Navigation