Skip to main content
Log in

Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6.0–7.1 GPa and application to natural conditions

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Sharp, “Pyrrhotite: A Common Inclusion in South African Diamonds,” Nature 211, 402–403 (1966).

    Article  Google Scholar 

  2. N. V. Sobolev and V. A. Vakhrushev, “Sulfides in Pyrope Peridotites from Yakutian Kimberlites,” Zap. Vseross. Mineral. O-va 96, 450–453 (1967).

    Google Scholar 

  3. G. A. Desborough and G. K. Czamanske, “Sulfides in Eclogite Nodules from a Kimberlite Pipe, South Africa: with Comments on Violarite Stoichiometry,” Am. Mineral. 58, 195–202 (1977).

    Google Scholar 

  4. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  5. G. P. Bulanova, A. V. Varshavskii, N. V. Leskova, and L. V. Nikishova, in Physical Properties and Mineralogy of Natural Diamonds (Izd. YaF SO AN SSSR, Yakutsk, 1979), pp. 29–45 [in Russian].

    Google Scholar 

  6. J. W. Harris and J. J. Garney, “Properties of Diamond,” in Inclusions in Diamond, Ed. by J. E. Field (Academic Press, London, 1979), pp. 556–591.

    Google Scholar 

  7. E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide Inclusions in Diamonds and Their Paragenesis,” Zap. Vseross. Mineral. O-va 112(11), 300–310 (1983).

    Google Scholar 

  8. G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in Diamonds and Xenoliths from Kimberlite Pipes of Yakutia (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  9. M. Schrauder and O. Navon, “Hydrous and Carbonatitic Mantle Fluids in Fibrous Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58, 761–771 (1994).

    Article  Google Scholar 

  10. G. P. Bulanova, W. L. Griffin, and C. G. Ryan, “Nucleation Environment of Diamonds from Yakutian Kimberlites,” Mineral. Mag. 62, 409–419 (1998).

    Article  Google Scholar 

  11. N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, et al., “Mineral Inclusions in Diamonds from the Sputnik Kimberlite Pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  12. E. S. Izraeli, J. H. Harris, and O. Navon, “Brine Inclusions in Diamonds: A New Upper Mantle Fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  13. Z. V. Spetsius, “Two Generations of Diamonds in the Eclogite Xenoliths,” in Proceedings of 7th International Kimberlite Conference, Cape Town, 1998, South Africa (Cape Town, 1998), pp. 823–828.

  14. P. Deines and J. W. Harris, “Sulfide Inclusion Chemistry and Carbon Isotopes of African Diamonds,” Geochim. Cosmochim. Acta 59, 3173–3188 (1995).

    Article  Google Scholar 

  15. O. Klein-BenDavid, A. M. Logvinova, E. S. Izraeli, et al., “Sulfide Melt Inclusions in Yubileynaya (Yakutia) Diamonds,” in Proceedings of 8th International Kimberlite Conference, Victoria, Canada, 2003, (Victoria, 2003), FLA_0119.

  16. A. M. Logvinova, O. Klein-BenDavid, E. S. Izraeli, et al., “Microinclusions in Fibrous Diamonds from Yubileinaya (Yakutia) Diamonds,” in Proceedings of 8th International Kimberlite Conference, Victoria, Canada, 2003, (Victoria, 2003), FLA_0125

  17. S. H. Richardson, S. B. Shirey, and J. W. Harris, “Episodic Diamond Genesis at Jwaneng, Botswana, and Implications for Kaapvaal Craton Evolution,” Lithos 77, 143–154 (2004).

    Article  Google Scholar 

  18. P. C. Marx, “Pyrrhotine and the Origin of Terrestrial Diamonds,” Mineral. Mag. 38, 636–638 (1972).

    Article  Google Scholar 

  19. S. E. Haggerty, “Diamond Genesis in a Multiply Constrained Model,” Natuire 320, 34–38 (1986).

    Article  Google Scholar 

  20. A. I. Chepurov, “Role of Sulfide Melts in the Formation of Natural Diamonds,” Geol. Geofiz., No. 8, 119–124 (1988).

  21. G. P. Bulanova, “The Formation of Diamond,” J. Geochem. Explor. 53, 1–23 (1995).

    Article  Google Scholar 

  22. A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN NITs OIGGM, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  23. S. V. Titkov, L. V. Bershov, E. Scandale, et al., “Nickel Structural Impurities in Natural Diamonds,” in Proceedings of 7th International Kimberlite Conference, Cape Town, 1998, South Africa (Cape Town, 1998), pp. 867–871.

  24. Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The First Synthesis of Diamond in Sulfide-Carbon Systems: The Role of Sulfides in Diamond Genesis,” Dokl. Akad. Nauk 382, 106–109 (2002) [Dokl. Earth Sci. 382, 40–43 (2002)].

    Google Scholar 

  25. Yu. A. Litvin and V. G. Butvina, “Diamond-Forming Media in the System Eclogite-Carbonatite-Sulfide-Carbon: Experiments at 6.0–8.5 GPa,” Petrologiya 12, 425–437 (2004) [Petrology 12, 377–387 (2004)].

    Google Scholar 

  26. Yu. N. Pal’yanov, Yu. M. Borzdov, I. Yu. Ovchinnikov, and N. V. Sobolev, “Experimental Study of the Interaction between Pentlandite Melt and Carbon at Mantle PT Parameters: Condition of Diamond and Graphite Crystallization,” Dokl. Akad. Nauk 392, 388–391 (2003) [Dokl. Earth Sci. 392, 1026–1029 (2003)].

    Google Scholar 

  27. Yu. A. Litvin, A. V. Shushkanova, and V. A. Zharikov, “Immiscibility of Sulfide-Silicate Melts in the Mantle: Role in the Syngenesis of Diamond and Inclusions (Based on Experiments at 7.0 GPa),” Dokl. Akad. Nauk 402, 719–723 (2005) [Dokl. Earth Sci. 403, 715–718 (2005)].

    Google Scholar 

  28. A. V. Shushkanova and Yu. A. Litvin, “Phase Relations during Melting of Diamond-Bearing Carbonate-Silicate-Sulfide Systems,” Geol. Geofiz. 46, 1331–1340 (2005).

    Google Scholar 

  29. A. V. Shushkanova and Yu. A. Litvin, “Formation of Diamond Polycrystals in Pyrrhotite-Carbonic Melt: Experiments at 6.7 GPa,” Dokl. Akad. Nauk 409, 394–398 (2006) [Dokl. Earth Sci. 409A, 916–920 (2006)]

    Google Scholar 

  30. G. Kurat and G. Dobosi, “Garnet and Diopside-Bearing Diamondites (Framesites),” Mineral. Petrol. 69, 143–159 (2000).

    Article  Google Scholar 

  31. T. Taniguchi, D. Dobson, A. P. Jones, et al., “Synthesis of Cubic Diamonds in the Graphite-Magnesium Carbonate and Graphite-K2Mg(CO3)2 Systems at High pressures of 9–10 GPa Region,” J. Mater. Res. 11, 2622–2632 (1996).

    Article  Google Scholar 

  32. Yu. A. Litvin, L. T. Chudinovskikh, and V. A. Zharikov, “Experimental Crystallization of Diamond and Graphite from Alkali-Carbonate Melts at 7–11 GPa,” Dokl. Akad. Nauk 355, 669–672 (1997) [Dokl. Earth Sci. 355, 908–911 (1997)].

    Google Scholar 

  33. Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, et al., “Diamond Crystallization in the Systems CaCO3-C, MgCO3-C, and CaMg(CO3)2-C,” Dokl. Akad. Nauk 363, 1156–1159 (1998) [Dokl. Earth Sci. 363, 1156–1159 (1998)].

    Google Scholar 

  34. Yu. A. Litvin and V. A. Zharikov, “Primary Fluid-Carbonatite Inclusions in Diamond: Experimental Modeling in the System K2O-Na2O-CaO-MgO-FeO-CO2 as a Diamond Formation Medium at 7–9 GPa,” Dokl. Akad. Nauk 367, 397–401 (1999) [Dokl. Earth Sci. 367, 801–805 (1999)].

    Google Scholar 

  35. Yu. M. Borzdov, A. G. Sokol, Yu. N. Pal’yanov, et al., “The Study of Diamond Crystallization from Alkaline Silicate, Carbonate, and Carbonate-Silicate Melts,” Dokl. Akad. Nauk 366, 530–533 (1999) [Dokl. Earth Sci. 366, 578–581 (1999)].

    Google Scholar 

  36. Yu. A. Litvin and V. A. Zharikov, “Experimental Modeling of Diamond Genesis: Diamond Crystallization in Multicomponent Carbonate-Silicate Melts at 5–7 GPa and 1200–1570°C,” Dokl. Akad. Nauk 372, 808–811 (2000) [Dokl. Earth Sci. 373, 867–870 (2000)].

    Google Scholar 

  37. A. F. Shatskii, Yu. M. Borzdov, A. G. Sokol, et al., “Phase Formation and Crystallization of Diamond in the Ultra-Potassic Carbon-Bearing Carbonate-Silicate Systems,” Geol. Geofiz. 43, 936–946 (2002).

    Google Scholar 

  38. Yu. A. Litvin, “Alkaline-Chloride Components in Processes of Diamond Growth in the Mantle and High-Pressure Experimental Conditions,” Dokl. Akad. Nauk 389, 382–386 (2003) [Dokl. Earth Sci. 389, 388–391 (2003)].

    Google Scholar 

  39. M. Akaishi and S. Yamaoka, “Crystallization of Diamond from C-O-H Fluids under High-Pressure and High-Temperature Conditions,” J. Cryst. Growth 213, 999–1003 (2000).

    Article  Google Scholar 

  40. Yu. N. Pal’yanov and A. G. Sokol, “Diamond and Graphite Crystallization in COH Fluid at PT Parameters of the Natural Diamond Formation,” Dokl. Akad. Nauk 375, 384–388 (2000) [Dokl. Earth Sci. 375, 1395–1398 (2000)].

    Google Scholar 

  41. M. Akaishi, M. D. Shaji Kumar, H. Kanda, and S. Yamaoka, “Formation Process of Diamond from Supercritical H2O-CO2 Fluid Under High Pressure and High Temperature Conditions,” Diamond Relat. Mater. 9, 1945–1950 (2000).

    Article  Google Scholar 

  42. A. G. Sokol, Yu. N. Pal’yanov, G. A. Pal’yanova, et al., “Diamond and Graphite Crystallization from C-O-H Fluids,” Diamond Relat. Mater. 11, 118–124 (2002).

    Article  Google Scholar 

  43. A. G. Sokol, Yu. N. Pal’yanov, G. A. Pal’yanova, and A. A. Tomilenko, “Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 1. Fluid Composition,” Geokhimiya, No. 9, 1–10 (2004) [Geochem. Int. 42, 830–838 (2004)].

  44. A. G. Sokol and Yu. N. Pal’yanov, “Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 2. An Analytical Review of Experimental Data,” Geokhimiya, No. 11, 1157–1172 (2004) [Geochem. Int. 42, 1018–1032 (2004)].

  45. Yu. A. Litvin, “High-Pressure Mineralogy of Diamond Genesis,” Ed. by E. Ohtani, Geol. Soc. Am. Monograph (2006).

  46. C. S. Kennedy and G. C. Kennedy, “The Equilibrium Boundary between Graphite and Diamond,” J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  47. Yu. L. Orlov, Diamond Mineralogy (Akad. Nauk SSSR, Moscow, 1963) [in Russian].

    Google Scholar 

  48. A. V. Spivak and Yu. A. Litvin, “Diamond Syntheses in Multicomponent Carbonate-Carbon Melts of Natural Chemistry: Elementary Processes and Properties,” Diamond Relat. Mater, No. 13, 482–487 (2003).

  49. G. I. Bocharova, V. K. Garanin, G. P. Kudryavtseva, and M. S. Perminova, “Sulfide Mineralization in Kimberlties of Yakutia,” in Proceedings of 13th IMA Conference, Sofia, 1989, p. 107 [in Russian].

  50. V. V. Sharygin, A. V. Golovnin, N. P. Pokhilenko, and N. V. Sobolev, “Djerfisherite in Unaltered Kimberlites of the Udachnaya-East Pipe, Yakutia,” Dokl. Akad. Nauk 390, 242–246 (2003) [Dokl. Earth Sci. 390, 554–557 (2003)].

    Google Scholar 

  51. O. Navon, “Diamond Formation in the Earth’s Mantle,” in Proceedings of 7th International Kimberlite Conferences, Cape Town, South Africa, 1999 (Red Roof Design, Cape Town, 1999), vol. 2, pp. 584–604.

    Google Scholar 

  52. Yu. A. Litvin, G. Kurat, and G. Doboshi, “Experimental Study of the Diamond Formation in Carbonate-Silicate Melts: Model Approximation to Natural Processes,” Geol. Geofiz. 46, 1304–1317 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shushkanova.

Additional information

Original Russian Text © A.V. Shushkanova, Yu.A. Litvin, 2008, published in Geokhimiya, 2008, No. 1, pp. 42–53.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shushkanova, A.V., Litvin, Y.A. Diamond formation in sulfide pyrrhotite-carbon melts: Experiments at 6.0–7.1 GPa and application to natural conditions. Geochem. Int. 46, 37–47 (2008). https://doi.org/10.1134/S0016702908010035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908010035

Keywords

Navigation