Skip to main content
Log in

Conditions of Quaternary magmatism at Spitsbergen Island

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Petrological and geochemical data obtained on the Quaternary lavas of volcanoes at Spitsbergen Island indicate that the rocks were produced via the deep-seated crystallization of parental alkaline magmas at 8–10 kbar. The character of clinopyroxene enrichment in incompatible elements indicates that the mineral crystallized from more enriched melts than those inferred from the composition of the host lavas. These melts were close to the parental melts previously found as veinlets in mantle hyperbasite xenoliths in the lavas. According to the character of their enrichment in Pb and Sr radiogenic isotopes and depletion in Nd, the basalts from Spitsbergen Island define a single trend with the weakly enriched tholeiites of the Knipovich Ridge, a fact suggesting the closeness of the enriched sources beneath the continental margin of Spitsbergen and beneath the spreading zone. Magmatic activity at Spitsbergen was related to the evolution of the Norwegian-Greenland basin, which evolved in pulses according to the shift of the spreading axes. The most significant of the latter events took place in the Neogene, when the Knipovich Ridge obtained its modern position near the western boundary of Spitsbergen. Early in the course of the evolution, the emplacement of alkaline melts generated at Spitsbergen into the oceanic mantle could form the enriched mantle, which was later involved in the melting process beneath the spreading zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Johansson, D. G. Gee, A. N. Larionov, et al., “Grenvillian and Caledonian Evolution of Eastern Svalbard—A Tale of Two Orogenies,” Terra Nova 17(4), 317–325 (2005).

    Article  Google Scholar 

  2. H. E. F. Amundsen, W. L. Griffin, and S. Y. O’ Reilly, “The Lower Crust and Upper Mantle beneath Northwestern Spitsbergen: Evidence from Xenoliths and Geophysics,” Tectonophysics 139, 169–185 (1987).

    Article  Google Scholar 

  3. T. Prestvik, Cenozoic Plateau Lavas of Spitsbergen—A Geochemical Study, Arbok. Norsk Polarinstituitt. 1977 (Oslo, 1978), pp. 129–143.

  4. A. N. Evdokimov, Volcanoes of Spitsbergen, (VNIIO, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  5. A. V. Sobolev, A. A. Migdisov, and M. V. Portnyagin, “Incompatible Element Partitioning between Clinopyroxene and Basalt Liquid Revealed by the Study of Melt Inclusions in Minerals from Troodos Lavas, Cyprus,” Petrologiya 4, 326–336 (1996) [Petrology 4, 307–317 (1996)].

    Google Scholar 

  6. G. Manhes, J. E. Minster, and C. J. Allegre, “Comparative Uranium-Thorium-Lead and Rubidium-Strontium Study of the Severin Amphoterite: Consequences for Early Solar System Chronology,” Earth Planet. Sci. Lett 39, 14–24 (1978).

    Article  Google Scholar 

  7. P. Richard, N. Schimizu, and C. J. Allegre, “143Nd/144Nd a Natural Tracer: An Application to Oceanic Basalts,” Earth Planet. Sci. Lett., 269–278 (1976).

  8. V. A. Maslov and V. G. Lazarenkov, “Structural Types of Mantle Xenoliths from Basanites of Sverre Volcano, Spitsbergen,” Izv. Vyssh. Uchebn. Zaved., Geol. Razved., No. 6, 45–52 (1999).

  9. V. V. Akinin, A. V. Sobolev, T. Ntaflos, and W. Richter, “Clinopyroxene Megacrysts from Enmelen Melanephelinitic Volcanoes (Chukchi Peninsula, Russia): Application to Composition and Evolution of Mantle Melts,” Contrib. Mineral. Petrol. 150, 85–101 (2005).

    Article  Google Scholar 

  10. N. A. Migdisova, N. M. Sushchevskaya, A. V. Luttinen, and E. M. Mikhalskii, “Variations in the Composition of Clinopyroxene from the Basalts of Various Geodynamic Settings of the Antarctic Region,” Petrologiya 12, 206–224 (2004) [Petrology 12, 176–194 (2004)].

    Google Scholar 

  11. L. G. Berry, B. Mason, and R. V. Dietrich, Mineralogy: Concepts, Descriptions, and Determinations (Freeman, San Francisco, 1983; Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  12. P. R. A. Wells, “Pyroxene Thermometry in Simple and Complex Systems,” Contrib. Mineral Petrol 62, 129–139 (1977).

    Article  Google Scholar 

  13. P. Nimis and P. Ulmer, “Clinopyroxene Geobarometry of Magmatic Rocks Part 1: An Expanded Structural Geobarometer for Anhydrous and Hydrous, Basic and Ultrabasic Systems,” Contrib. Mineral. Petrol. 133, 122–135 (1998).

    Article  Google Scholar 

  14. S.-S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  15. D. M. Ionov, S. B. Mukasa, and J.-L. Bodinier, “Sr-Nd-Pb Isotopic Compositions of Peridotite Xenoliths from Spitsbergen: Numerical Modelling Indicates Sr-Nd Decoupling in the Mantle by Melt Percolation Metasomatism,” J. Petrol. 43, 2261–2278 (2002).

    Article  Google Scholar 

  16. N. M. Sushchevskaya, G. A. Cherkashov, B. V. Baranov, et al., “Tholeiitic Magmatism of an Ultraslow Spreading Environment: An Example from the Knipovich Ridge, North Atlantic,” Geokhimiya, No. 3, 254–274 (2005) [Geochem. Int. 43, 222–241 (2005)].

  17. A. N. Evdokimov, “New Age Data on Mantle Xenoliths from Spitsbergen Volcanoes,” in Proceedings of 5th International Conference on Complex Study of the Spitsbergen Nature, Apatity, Russia, 2005, (Apatity, 2005), pp. 173–178 [in Russian].

  18. E. H. Hauri, J. A. Whitehead, and S. R. Hart, “Fluid Dynamic and Geochemical Aspects of Entrainment in Mantle Plumes,” J. Geophys. Res. 99, 24275–24300 (1994).

    Article  Google Scholar 

  19. S. R. Hart and T. Dunn, “Experimental Cpx/Melt Partitioning of 24 Trace Elements,” Contrib. Mineral. Petrol. 113, 1–8 (1993).

    Article  Google Scholar 

  20. D. A. Ionov, J-L. Bodinier, S. B. Mukasa, and A. Zanetti, “Mechanisms and Sources of Mantle Metasomatism: Major and Trace Element Compositions of Peridotite Xenoliths from Spitsbergen in the Context of Numerical Modeling,” J. Petrol. 43, 2219–2259 (2002).

    Article  Google Scholar 

  21. O. Engen, O. Eldholm, and H. Bungum, “The Arctic Plate Boundary,” J. Geophys. Res 108(B2) (2003).

  22. K. Okino, D. Curewitz, M. Asada, et al., “Preliminary Analysis of the Knipovich Ridge Segmentation: Influence of Focused Magmatism and Ridge Obliquity on An Ultraslow Spreading System,” Earth Planet. Sci. Lett. 202, 275–288 (2002).

    Article  Google Scholar 

  23. K. Crane, H. Doss, P. Vogt, et al., “The Role of the Spitsbergen Shear Zone in Determining Morphology, Segmentation and Evolution of the Knipovich Ridge,” Mar. Geophys. Res. 22, 153–205 (2001).

    Article  Google Scholar 

  24. K. Crane, E. Sundvor, R. Buck, and F. Martinez, “Rifting in the Northern Norwegian-Greenland Sea: Thermal Test of Asymmetric Spreading,” J. Geophys. Res. 96, 14529–14550 (1991).

    Article  Google Scholar 

  25. Seismic Atlas of Western Svalbard, Ed. by O. Eiken, Norsk Polarinstitutt Meddelelser, No. 130, (1994).

  26. O. G. Olesen, J. Gellein, H. Habrekke, et al., Magnetic Anomaly Map, Norway and Adjacent Ocean Areas, Scale 1: 3000000, (Geol. Surv. Norway, Oslo, 1997).

    Google Scholar 

  27. E. A. Gusev and S. I. Shkarubo, “The Anomalous Structure of the Knipovich Ridge,” Russ. J. Earth Sci. 3(2), 145–161 (2001).

    Article  Google Scholar 

  28. K. Tamaki and G. A. Cherkashov, “Knipovich-2000 Scientific Party, Japan-Russia Cooperation at the Knipovich Ridge in the Arctic Sea,” InterRidge News 10, 48–51 (2001).

    Google Scholar 

  29. C. DeMets, R. G. Gordon, D. F. Argus, and S. Stein, “Current Plate Motion,” Geophys. Jour. Int. 101, 425–478 (1991).

    Article  Google Scholar 

  30. B. Baranov, Ye. Gusev, N. Suschchevskaya, and G. Cherkasov, “Oligocene Rocks of the Knipovich Ridge (Northern Atlantic) as Evidence of Ridge Jumping and Propagation,” in Proceedings of K2K Post-Cruise Meeting Geology and Geophysics of the Knipovich Ridge, (St. Petersburg, 2001), pp. 7–8.

  31. W. Czuba, O. Ritzmann, Y. Nishimura, et al., “Crustal Structure of Northern Spitsbergen along the Deep Seismic Transect between the Molloy Deep and Nordanstlandet,” Geophys. J. Int. 161, 347–364 (2005).

    Article  Google Scholar 

  32. H. E. Hansen, H. E. F. Amundsen, J. E. Snow, and R. B. Pedersen, “A Comparison of Peridotites from the Molloy Deep and the Gakkel Ridge with Mantle Xenolites from Spitsbergen,” Geophys. Res. Abstr. 5, 13638 (2003).

    Google Scholar 

  33. E. Hellebrand and J. E. Snow, “Deep Melting and Sodic Metasomatism Underneath the Highly Oblique-Spreading Lena Trough (Arctic Ocean),” Earth Planet. Sci. Lett. 216, 283–299 (2003).

    Article  Google Scholar 

  34. R. B. Whitmarsh, T. A. Minshull, K. E. Louden, et al., “The Role of Syn-Rift Magmatism in the Rift-to-Drift Evolution of the West Iberia Continental Margin: Geophysical Observations,” in Non-Volcanic Rifting of Continental Margin: A Comparison of Evidence from Land and Sea, Ed. by R. C. L. Wilson, R. B. Whitmarsh, et al., Geol. Soc. London Spec. Publ. 187, 107–124 (2002).

  35. K. Crane, E. Sundvor, J. P. Foucher, et al., “Thermal Evolution of the Western Svalbard Margin,” Mar. Geophys. Res. 9, 165–194 (1988).

    Article  Google Scholar 

  36. W. Czuba, O. Ritzmann, Y. Nishimura, et al., “Crustal Structure of the Continent-Ocean Transition Zone Along Two Deep Seismic Transects in North-Western Spitsbergen,” Polish Polar Res. 25(3–4), 205–221 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Sushchevskaya.

Additional information

Original Russian Text © N.M. Sushchevskaya, A.N. Evdokimov, B.V. Belyatsky, V.A. Maslov, D.V. Kuz’min, 2008, published in Geokhimiya, 2008, No. 1, pp. 3–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sushchevskaya, N.M., Evdokimov, A.N., Belyatsky, B.V. et al. Conditions of Quaternary magmatism at Spitsbergen Island. Geochem. Int. 46, 1–16 (2008). https://doi.org/10.1134/S0016702908010011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908010011

Keywords

Navigation