Skip to main content
Log in

Thermal evolution of the western Svalbard margin

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The northern Norwegian-Greenland Sea opened up as the Knipovich Ridge propagated from the south into the ancient continental Spitsbergen Shear Zone. Heat flow data suggest that magma was first intruded at a latitude of ≈75° N around 60 m.y.b.p. By 40–50 m.y.b.p. oceanic crust was forming at a latitude of 78° N. At ≈12 m.y.b.p. the Hovgård Transform Fault was deactivated during a northwards propagation of the Knipovich Ridge. Spreading is now in its nascent stages along the Molloy Ridge within the trough of the Spitsbergen Fracture Zone. Spreading rates are slower in the north than the south. For the Knipovich Ridge at 78° N they range from 1.5–2.3 mm yr-1 on the eastern flank to 1.9–3.1 mm yr-1 on the western flank. At a latitude of 75° N spreading rates increase to 4.3–4.9 mm yr-1.

Thermal profiles reveal regions of off-axial high heat flow. They are located at ages of 14 m.y. west and 13 m.y. east of the northern Knipovich Ridge, and at 36 m.y. on the eastern flank of the southern Knipovich Ridge. These may correspond to episodes of increased magmatic activity; which may be related to times of rapid north-wards rise axis propagation.

The fact that the Norwegian-Greenland Sea is almost void of magnetic anomalies may be caused by the chaotic extrusion of basalts from a spreading center trapped within the confines of an ancient continental shear zone. The oblique impact of the propagating rift with the ancient shear zone may have created an unstable state of stress in the region. If so, extension took place preferentially to the northwest, while compression occurred to the southeast between the opening, leaking shear zone and the Svalbard margin. This caused faster spreading rates to the northwest than to the southeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AlvarezF., 1984, Etude de l'evolution thermique des Bassins Sedimentaires formes par extension. Consequences thermomecaniques du rifting. Applications a Graben Viking (Mer du Nord) Diplome de Docteur de 3eme Cycle Univ. Pierre et Marie Curie, Paris 6, France.

    Google Scholar 

  • BeaumontC., KeenC. E., and BoutilierR., 1982, On the Evolution of Rifted Continental Margins: Comparison of Models and Observations for the Nova Scotian Margin, Geophys. J. R. Astr. Soc. 70, 667–715.

    Google Scholar 

  • BenfieldA. E., 1949, The Effect of Uplift and Denudation on Underground Temperatures, J. App. Phys. 20, 66–70.

    Google Scholar 

  • BonattiE. and CraneK., 1982, Oscillatory Spreading Explanation of Anomalously Old Uplifted Crust near Oceanic Transforms, nature 300, 343.

    Google Scholar 

  • BonattiE. and CraneK., 1984, The Geology of Oceanic Transform Faults, Scientific American 250, 5, 40–51.

    Google Scholar 

  • CourtillotV., 1982, Propagating Rifts and Continental Breakup, Tectonics 1, 239.

    Google Scholar 

  • CraneK., EldholmO., MyhreA. M., and SundvorE., 1982, Thermal Implications for the Evolution of the Spitsbergen Transform Fault, Tectonophysics 89, 1–32.

    Google Scholar 

  • Crane, K. and Bonatti, E., 1986, Fracture Zone Control on the Opening of the Red Sea: SIR A Data, Jour. of the Geological Soc. of London (in press).

  • EldholmO., VogtP., and PerryR., 1978, Plate Tectonic Development of the Mid-Oceanic Ridge System North of the Jan Mayen Fracture Zone, A: Present Plate Boundaries, EOS 59, 371.

    Google Scholar 

  • EldholmO. and SundvorE., 1980, The Continental Margins of the Norwegian-Greenland Sea: Recent Results and Outstanding Problems, Royal Society of London Phil. Trans., Ser. A, 294, 77–86.

    Google Scholar 

  • Eldholm, O., Sundvor, E., Myhre, A. M., and Faleide, J. I., 1984, Cenozoic Evolution of the Continental Margin off Norway and Western Svalbard, Petroleum Geology of the North European Margin. Norwegian Petroleum Society, Graham and Trotman, pp. 3–18.

  • Eldholm, O., Karasik, A. M., and Reksnes, P. A., 1986, The North American Plate Boundary, DNAG synthesis. Volume Geology of the Arctic Ocean Region Chapter 12.

  • HorsfieldW. T. and MatonP. I., 1970, Transform Faulting along the De Geer Line, Nature 226, 256–257.

    Google Scholar 

  • HutchinsonI., 1985, The Effects of Sedimentation and Compaction on Oceanic Heat Flow, Geophys. J. R. Astr. Soc. 82, 439–459.

    Google Scholar 

  • JacksonH. R., JohnsonG. L., SundvorE., and MyhreA. M., 1984, The Yermak Plateau: Formed at a Triple Junction, J. Geophys. Research 89, B5, 3223–3232.

    Google Scholar 

  • JohnsonL and HeezenB. C., 1967, Morphology and Evolution of the Norwegian-Greenland Sea, Deep-Sea Research 14, 755–771.

    Google Scholar 

  • JohnsonG. L., 1969, Morphology of Eurasian-Arctic Basin, Polar Record 14, 619–628.

    Google Scholar 

  • KovacsL. C. and VinkG. E., 1984, New Aeromagnetic Data from the High Arctic and Norwegian-Greenland Sea; EOS 65, 199.

    Google Scholar 

  • LangsethM. G. and ZielinskiG. W., 1974, Marine Heat Flow Measurements in the Norwegian-Greeland Sea and in the Vicinity of Iceland. Geodynamics of Iceland and the North Atlantic Area, D. Reidel Publ. Co., Dordrecht, Holland, pp. 277–295.

    Google Scholar 

  • LangsethM. G., HobartM. A., and HoraiK., 1980, Heat Flow in the Bering Sea, J. Geophys. Res. 85, 3740–3750.

    Google Scholar 

  • Langseth, M. G., Lachenbruch, A. H., and Marshall, V. Geothermal Observations in the Arctic Region, DNAG Synthesis Volume, Geology of the Artic Ocean Region (in press).

  • LeeT.-C. and HenyeyT. L., 1975, Heat Flow Through the Southerm California Borderland, J. Geophys. Res. 80, 26, 3733–3743.

    Google Scholar 

  • LePichonX. and HayesD. E., 1971, Marginal Offsets, Fracture Zones and the Early Opening of the South Atlantic, J. Geophys. Res. 76, 6294–6308.

    Google Scholar 

  • Lucazeau, F. and LeDouaran, S., 1985, Numerican Modeling of Sediment Time/Temperature History: Comparison Between the Gulf of Lion and the Viking Graben, Earth and Planet. Sci. Lett.

  • MyhreA. M. and EldholmO., 1981, Sedimentary and Crustal Velocities in the Norwegian-Greeland Sea, J. Geophys Res. 86, 5012–5022.

    Google Scholar 

  • MyhreA. M., EldholmO., and SundvorE., 1983, The Margin Between the Senja and Spitsbergen Fracture Zones: Implications from Plate Tectonics, Tectonophysics 89, 1–32.

    Google Scholar 

  • Myhre, A. M., 1984, The Western Svalbard Margin, (74°–80° N), in Marine Geophysical Studies in the Norwegian-Greeland Sea and Adjacent Margins, Dr. Scient. Thesis, Univ. of Oslo.

  • Nunns, A. G., 1981, Plate Tectonic Evolution of the Greeland-Scotland Ridge and Surrounding Regions: Structure and Development of the Greenland-Scotland Ridge, M. H. P. Bott, S. Saxov, M. Talwani, and J. Thiede (eds.), NATO Conference Series, IV, 685 p.

  • OhtaY., 1982, Morphotectonic Studies Around Svalbard and the Northernmost Atlantic; Canadian Society of Petroleum Geologists, Memoir 8, 415–429.

    Google Scholar 

  • ParsonsB. and SclaterJ. G., 1977, An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age, J. Geophys. Res. 82, 803–827.

    Google Scholar 

  • PerryR. K., FlemingH. S., CherkisN. Z., FedenR. H., and VogtR. R., 1980, Bathymetry of the Norwegian-Greenland and Western Barents Seas, U.S. Naval Res. Lab., Acoustic Div., Washington, D.C.

    Google Scholar 

  • RabinowitzP. D. and LaBrecqueJ. L., 1979, The Mesozoic South Atlantic Ocean and Evolution of its Continental Margins, J. Geophys. Res. 84, 5973–6002.

    Google Scholar 

  • RubeyW. W. and HubbertM. K., 1960, Role of Fluid Pressure in Mechanics of Overthrust Faulting. II. Overthrust Belt in Geosynclinal Area of Western Wyoming in Light of Fluid Pressure Hypothesis, Bull. Geol. Soc. Am. 60, 167–205.

    Google Scholar 

  • SavostinL. A. and KarasikA. M., 1981, Recent Plate Tectonics of the Arctic Basin and of Northeastern Asia, Tectonophysics 74, 111–145.

    Google Scholar 

  • SclaterJ. G. and FrancheteauJ., 1970, The Implication of Terrestrial Heat Flow Observations in Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth, Geophys. J. Roy. Astron. Soc. 20, 509–542.

    Google Scholar 

  • SundvorE., EldholmO., GidskehaugA., and MyhreA. M., 1977, Marine Geophysical Survey on the Western and Northern Continental Margin off Svalbard, Univ. Bergen Seismol. Obs., Sci. Rep. 4, 35.

    Google Scholar 

  • SundvorE. and EldholmO., 1979, The Western and Northern Margin off Svalbard, Tectonophysics 59, 239–250.

    Google Scholar 

  • SundvorE., MyhreA. M., and EldholmO., 1979, The Svalbard Continental Margin, Nor. Sea Symp. Nor. Pet. Soc., NSS 6: 1–25.

    Google Scholar 

  • TalwaniM. and EldholmO., 1977, Evolution of the Norwegian-Greenland Sea, Geol. Soc. America Bull. 88, 969–999.

    Google Scholar 

  • VogtP. R., JohnsonG. L., and KristjanssonL., 1980, Morphology and Magnetic Anomalies North of Iceland, Geophys. J., 47, 61–66.

    Google Scholar 

  • Vogt, P. R., Perry, R. K., Feden, R. H., Fleming, H. S., and Cherkis, N. Z., 1981, ‘The Greenland-Norwegian Sea and Iceland Environment: Geology and Geophysics’, in The Ocean Basins and Margins, 5, Nairn, A. E. M. and Churkin, M. (eds.), pp. 493–598.

  • ZielinskiG. W., 1979, On the Thermal Evolution of Passive Continental Margins, Thermal Depth Anomalies, and the Norwegian-Greenland Sea, J. Geophys. Res. 84, 7577–7588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, K., Sundvor, E., Foucher, J.P. et al. Thermal evolution of the western Svalbard margin. Mar Geophys Res 9, 165–194 (1988). https://doi.org/10.1007/BF00369247

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369247

Keywords

Navigation