Skip to main content
Log in

Equation of state of magnesite for the conditions of the Earth’s lower mantle

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A semiempirical equation of state was derived for magnesite under the thermodynamic conditions of the Earth’s mantle. Within experimental uncertainties, it is consistent with thermochemical, ultrasonic, X-ray, and shock-wave data at temperatures from 15 K to the melting point and pressures of up to 100–130 GPa. The following values were recommended for the isothermal bulk modulus and its pressure derivative: K T = 111.71 GPa and K′ = 4.08. Thermodynamic analysis showed that magnesite does not decompose to periclase and CO2 under the thermodynamic conditions of the Earth’s lower mantle and outer core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Katsura, Y. Tsuchida, E. Ito, et al., “Stability of Magnesite under the Lower Mantle Conditions,” Proc. Japan Acad. Ser. B, Phys. Biolog. Sci. 67, 57–60 (1991).

    Google Scholar 

  2. M. Isshiki, T. Irifune, K. Hirose, et al., “Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle,” Nature 427, 60–64 (2004).

    Article  Google Scholar 

  3. N. V. Skorodumova, A. B. Belonoshko, L. Huang, et al., “Stability of the MgCO3 Structures under Lower Mantle Conditions,” Am. Mineral. 90, 1008–1011 (2005).

    Article  Google Scholar 

  4. L. Liu, “Effects of CO2 on the Phase Behavior of the Enstatite-Forsterite System at High Pressures and Temperatures,” Phys. Earth Planet. Inter. 146, 261–272 (2004).

    Article  Google Scholar 

  5. O. L. Kuskov and N. I. Khitarov, Thermodynamics and Geochemistry of the Core and Mantle of the Earth (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  6. Yu. I. Sidorov, “Mathematical Simulation of Complex Natural Systems,” Geokhimiya, No. 1, 103–106 (2006) [Geochem. Int. 44, 94–108 (2006)].

  7. V. B. Polyakov and O. L. Kuskov, “Internally Consistent Model for the Calculation of Thermoelastic and Calorimetric Properties of Minerals,” Geokhimiya, No. 7, 1096–1121 (1994).

  8. T. V. Gerya, K. K. Podlesskii, L. L. Perchuk, et al., “Equation of State of Minerals for Thermodynamic Databases Used in Petrology,” Petrologiya 6, 563–578 (1998) [Petrology 6, 511–526 (1998)].

    Google Scholar 

  9. T. V. Gerya, K. K. Podlessky, L. L. Perchuk, and W. V. Maresch, “Semi-Empirical Gibbs Free Energy Formulations for Minerals and Fluids for Use in Thermodynamic Databases of Petrological Interest,” Phys. Chem. Minerals 31, 429–455 (2004).

    Article  Google Scholar 

  10. J. Hama and K. Suito, “Thermoelastic Models of Minerals and the Composition of the Earth’s Lower Mantle,” Phys. Earth Planet. Inter. 125, 147–166 (2001).

    Article  Google Scholar 

  11. L. Stixrude and C. Lithgow-Bertelloni, “Thermodynamics of Mantle Minerals-I. Physical Properties,” Geophys. J. Int. 162, 610–632 (2005).

    Article  Google Scholar 

  12. P. I. Dorogokupets, “Critical Analysis of Equations of State for NaCl,” Geochem. Int. 40, S132–S144 (2002).

    Google Scholar 

  13. P. I. Dorogokupets and A. R. Oganov, “Equations of State of Cu and Ag and Revised Ruby Pressure Scale,” Dokl. Akad. Nauk 391, 515–518 (2003) [Dokl. Earth Sci. 391, 854–857 (2003)].

    Google Scholar 

  14. P. I. Dorogokupets and A. R. Oganov, “Equations of State of Al, Au, Cu, Pt, Ta, and W and Revised Ruby Pressure Scale,” Dokl. Akad. Nauk 410, 239–243 (2006) [Dokl. Earth Sci. 410, 1091–1095 (2006)].

    Google Scholar 

  15. P. I. Dorogokupets and A. R. Oganov, “Ruby, Metals, and MgO as Alternative Pressure Scales: A Semiempirical Description of Shock-Wave, Ultrasonic, X-Ray, and Thermochemical Data at High Temperatures and Pressures,” Phys. Rev. B 75, Art. No 024115 (2007).

  16. S. V. Churakov, “Thermoelastic Properties of Solid Phases: C++ Object Oriented Library ’solidEOS’,” Comp. Geosci. 31, 786–791 (2005).

    Article  Google Scholar 

  17. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  18. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

  19. P. Vinet, J. Ferrante, J. H. Rose, and J. R. Smith, “Compressibility of Solids,” J. Geophys. Res. 92, 9319–9325 (1987).

    Article  Google Scholar 

  20. L. V. Al’tshuler, S. E. Brusnikin, and E. A. Kuz’menkov, “Isotherms and Gruneisen Functions for 25 Metals,” Prikl. Mekh. Tekh. Fiz. 161, 134–146 (1987).

    Google Scholar 

  21. A. R. Oganov and P. I. Dorogokupets, “Intrinsic Anharmonicity in Thermodynamics and Equations of State of Solids,” J. Phys. Condens. Matter. 16, 1351–1360 (2004).

    Article  Google Scholar 

  22. P. I. Dorogokupets and A. R. Oganov, “Intrinsic Anharmonicity in Equations of State of Solids and Minerals,” Dokl. Akad. Nauk 395, 804–807 (2004) [Dokl. Earth Sci. 395, 238–241 (2004)].

    Google Scholar 

  23. W. B. Holzapfel, “Effects of Intrinsic Anharmonicity in the Mie-Gruneisen Equation of State and Higher Order Corrections,” High Pressure Res. 25, 187–203 (2005).

    Article  Google Scholar 

  24. B. S. Hemingway, R. A. Robie, J. R. Fisher, and W. H. Wilson, “Heat Capacities of Gibbsite, Al(OH)3, between 13 and 480 K and Magnesite, MgCO3, between 13 and 380 K and Their Standard Entropies at 298.15 K, and Heat Capacities of Calorimetry Conference Benzoic Acid between 12 and 316 K,” J. Res. U.S. Geol. Surv. 5, 797–806 (1977).

    Google Scholar 

  25. R. A. Robie, B. S. Hemingway, and J. R. Fisher, “Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressures and at Higher Temperatures,” U.S. Geol. Surv. Bull., No. 1452 (1978).

  26. S. A. Markgraf and R. J. Reeder, “High-Temperature Structure Refinements of Calcite and Magnesite,” Am. Mineral. 70, 590–600 (1985).

    Google Scholar 

  27. N. I. Christensen, “Elastic Properties of Polycrystalline Magnesium, Iron, and Manganese Carbonates to 10 Kilobars,” J. Geophys. Res. 77, 369–372 (1972).

    Google Scholar 

  28. P. Hubert and F. Plicque, “Proprietes elastiques de carbonates rhombohedriques monocristallins: calcite, magnesite, dolomite,” C. R. Acad. Sci. Paris 275, 391–304 (1972).

    Google Scholar 

  29. P. Gillet, “Stability of Magnesite (MgCO3) at Mantle Pressure and Temperature Conditions: A Raman Spectroscopic Study,” Am. Mineral. 78, 1328–1331 (1993).

    Google Scholar 

  30. G. Fiquet, F. Guyot, and J. P. Itie, “High-Pressure X-Ray Diffraction Study of Carbonates: MgCO3, CaMg(CO3)2, and CaCO3,” Am. Mineral. 79, 15–23 (1994).

    Google Scholar 

  31. G. Fiquet and B. Reynard, “High-Pressure Equation of State of Magnesite: New Data and a Reappraisal,” Am. Mineral. 84, 856–860 (1999).

    Google Scholar 

  32. G. Fiquet, F. Guyot, M. Kunz, et al., “Structural Refinements of Magnesite at Very High Pressure,” Am. Mineral. 87, 1261–1265 (2002).

    Google Scholar 

  33. N. L. Ross, “The Equation of State and High-Pressure Behavior of Magnesite,” Am. Mineral. 82, 682–688 (1997).

    Google Scholar 

  34. J. Zhang, I. Martinez, F. Guyot, and P. Gillet, “X-Ray Diffraction Study of Magnesite at High Pressure and High Temperature,” Phys. Chem. Minerals 24, 122–130 (1997).

    Article  Google Scholar 

  35. N. G. Kalashnikov, M. N. Pavlovskii, G. V. Simakov, and R. F. Trunin, “Dynamic Compressibility of Calcite Group Minerals,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 2, 23–29 (1973).

  36. J. Matas, O. Gillet, Y. Ricard, and I. Martinez, “Thermodynamic Properties of Carbonates at High Pressures from Vibrational Modeling,” Eur. J. Mineral. 12, 703–720 (2000).

    Google Scholar 

  37. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1978–1982), Vols. 1–4 [in Russian].

    Google Scholar 

  38. S. A. T. Redfern, B. J. Wood, and C. M. B. Henderson, “Static Compressibility of Magnesite to 20 GPa: Implications for MgCO3 in the Lower Mantle,” Geophys. Res. Lett. 20, 2099–2120 (1993).

    Google Scholar 

  39. H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, “Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar,” J. Appl. Phys. 49, 3276–3283 (1978).

    Article  Google Scholar 

  40. L. Vocadlo, “First Principles Calculations on the High-Pressure Behavior of Magnesite,” Am. Mineral. 84, 1627–1631 (1999).

    Google Scholar 

  41. A. Belonoshko and S. K. Saxena, “A Molecular Dynamic Study of the Pressure-Volume-Temperature Properties of Supercritical Fluids: CO2, CH4, CO, O2, and H2,” Geochim. Cosmochim. Acta 55, 3191–3208 (1991).

    Article  Google Scholar 

  42. S. V. Churakov and M. Gottschalk, “Perturbation Theory Based Equation of State for Polar Molecular Fluids: I. Pure Fluids,” Geochim. Cosmochim. Acta 67, 2397–2414 (2003).

    Article  Google Scholar 

  43. A. J. Irving and P. J. Wyllie, “Melting Relationships in CaO-CO2 and MgO-CO2 to 36 Kilobars with Comments on CO2 in the Mantle,” Earth Planet Sci. Lett. 20, 220–225 (1973).

    Article  Google Scholar 

  44. A. R. Oganov, C. W. Glass, and S. Ono, “High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment,” Earth Planet. Sci. Lett. 241, 95–103 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.I. Dorogokupets, 2007, published in Geokhimiya, 2007, No. 6, pp. 624–631.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorogokupets, P.I. Equation of state of magnesite for the conditions of the Earth’s lower mantle. Geochem. Int. 45, 561–568 (2007). https://doi.org/10.1134/S0016702907060043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702907060043

Keywords

Navigation