Skip to main content
Log in

Solitary Waves in a Two-Layer Fluid with Piecewise Exponential Stratification

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of internal stationary waves in a two-layer fluid with a density, which exponentially depends on the depth inside the layers and undergoes a jump at the interface, is considered. A nonlinear equation is derived in the second-order long-wave approximation, and asymptotic submodels describing solitary waves of finite amplitude are examined. The dispersion properties and wave-propagation modes depending on the dimensionless parameters of the background piecewise constant flow are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Krauss, W., Interne Wellen, Berlin: Gebruder Borntraeger, 1966.

    Google Scholar 

  2. Yih, C.S., Stratified Flows, New York: Acad. Press, 1980.

    Google Scholar 

  3. LeBlond, P.H. and Mysak, L.A., Waves in the Ocean, New York: Elsevier, 1978.

    Google Scholar 

  4. Ovsyannikov, L.V., Makarenko, N.I., Nalimov, V.I., et al., Nelineinye problem teorii poverkhnostnykh i vnutrennikh voln (Nonlinear Problems for the Theory of Surface and Internal Waves), Novosibirsk: Nauka, 1985.

  5. Ilichev, A.T., Uedinennye volny v modelyakh gidromekhaniki (Solitary Waves in Fluid Dynamics), Moscow: Fizmatlit, 2003.

  6. Helfrich, K.R. and Melville, W.K., Long nonlinear internal waves, Annu. Rev. Fluid Mech., 2006, vol. 38, pp. 395–425.

    Article  ADS  MathSciNet  Google Scholar 

  7. Dubriel-Jacotin, M.L., Sur les theoremes d’existence relatifs aux ondes permanentes perodiques a deux dimensions dans les liquides heterogenes, J. Math. Pure Appl., 1937, vol. 16, no. 9, pp. 43–67.

    Google Scholar 

  8. Long, R.R., Some aspects of the flow of stratified fluid. I. A theoretical investigation, Tellus, 1953, vol. 5, pp. 42–57.

    Article  ADS  MathSciNet  Google Scholar 

  9. Voronovich, A.G., Strong solitary internal waves in a 2.5-layer model, J. Fluid Mech., 2003, vol. 474, pp. 85–94.

    Article  ADS  MathSciNet  Google Scholar 

  10. Goullet, A. and Choi, W., Large amplitude internal solitary waves in a two-layer system of piecewise linear stratification, Phys. Fluids, 2008, vol. 20, p. 096601. https://doi.org/10.1063/1.2978205

  11. Makarenko, N.I. and Maltseva, J.L., Asymptotic models of internal stationary waves, J. Appl. Mech. Techn. Phys., 2008, vol. 49, no. 4, pp. 646–654.

    Article  ADS  MathSciNet  Google Scholar 

  12. Makarenko, N.I. and Maltseva, J.L., Solitary waves in a weakly stratified two-layer fluid, J. Appl. Mech. Techn. Phys., 2009, vol. 50, no. 2, pp. 229–234.

    Article  ADS  Google Scholar 

  13. Sutherland, B.R., Internal Gravity Waves, Cambridge: Univ. Press, 2010.

    Book  Google Scholar 

  14. Makarenko, N.I. and Maltseva, J.L., Phase velocity spectrum of internal waves in a weakly-stratified two-layer fluid, Fluid Dyn., 2009, vol. 44, no. 2, pp. 278–294.

    Article  ADS  MathSciNet  Google Scholar 

  15. Miyata, M., An internal solitary wave of large amplitude, La Mer, 1985, vol. 23, no. 2, pp. 43–48.

    Google Scholar 

  16. Choi, W. and Camassa, R., Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 1999, vol. 396, pp. 1–36.

    Article  ADS  MathSciNet  Google Scholar 

  17. Makarenko, N., Maltseva, J., Morozov, E., Tarakanov, R., and Ivanova, K., Internal waves in marginally stable abyssal stratified flow, Nonlin. Proces. Geophys., 2018, vol. 25, pp. 659–669.

    Article  ADS  Google Scholar 

  18. Makarenko, N.I., Maltseva, J.L., Morozov, E.G., Tarakanov, R.Yu., and Ivanova, K.A., Steady internal waves in deep stratified flows, J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 2, pp. 74–83.

    Article  MathSciNet  Google Scholar 

  19. Carr, M., Fructus, D., Grue, J., Jensen, A., and Davies, P.A., Convectively induced shear instability in large amplitude internal solitary waves, Phys. Fluids, 2008, vol. 20, p. 126601.

  20. Van Haren, H., Gostiaux, L., Morozov, E., and Tarakanov, R., Extremely long Kelvin–Helmholtz billow trains in the Romanche fracture zone, Geophys. Rev. Lett., 2014, vol. 44, pp. 8445–8451.

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project ID 21-71-20039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Makarenko, J. L. Maltseva or A. A. Cherevko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Presented below are expressions for the coefficients in Eq. (4.4) of the functions \(P\) and \(Q\) in Eq. (4.3). For the function \(P\) linearly depending on the square of Froude numbers \(F_{1}^{2}\) and \(F_{2}^{2}\), the following presentation is valid:

$$P(\eta ;F) = {{P}_{0}}(\eta ) + \mu F_{1}^{2}{{P}_{1}}(\eta ) + \mu F_{2}^{2}{{P}_{2}}(\eta ),$$

where \({{P}_{j}}(\eta ) = {{p}_{{j0}}} + {{p}_{{j1}}}\eta + {{p}_{{j2}}}{{\eta }^{2}}\) (\(j = 0,1,2\)) are polynomials of the second power in \(\eta \) with the trigonometric coefficients

$${{p}_{{00}}} = - \frac{\mu }{2}$$
$${{p}_{{01}}} = - \frac{{{{\sigma }_{1}}(1 + \mu )}}{{48{{{\sin }}^{2}}{{\alpha }_{1}}{{{\cos }}^{2}}({{\alpha }_{1}}{\text{/2}})}}(2{{\sigma }_{1}} - 2 + (4{{\sigma }_{1}} - 1)\cos {{\alpha }_{1}} + 2\cos 2{{\alpha }_{1}} + \cos 3{{\alpha }_{1}})$$
$$ - \;\frac{{r{{\sigma }_{2}}}}{{48{{{\sin }}^{2}}{{\alpha }_{2}}{{{\cos }}^{2}}({{\alpha }_{2}}{\text{/2}})}}(2{{\sigma }_{2}} + 2 + (4{{\sigma }_{2}} + 1)\cos {{\alpha }_{2}} - 2\cos 2{{\alpha }_{2}} - \cos 3{{\alpha }_{2}}),$$
$${{p}_{{02}}} = - \frac{{\sigma _{1}^{2}(1 + \mu )}}{{24{{{\sin }}^{2}}{{\alpha }_{1}}{{{\cos }}^{2}}({{\alpha }_{1}}{\text{/2}})}}(1 + 2\cos {{\alpha }_{1}}) + \frac{{r\sigma _{2}^{2}}}{{24{{{\sin }}^{2}}{{\alpha }_{2}}{{{\cos }}^{2}}({{\alpha }_{2}}{\kern 1pt} /{\kern 1pt} 2)}}(1 + 2\cos {{\alpha }_{2}}),$$
$${{p}_{{10}}} = \frac{1}{4}(2{{\lambda }_{1}}{\text{ctg}}{{\alpha }_{1}} + {{\sigma }_{1}}),$$
$${{p}_{{20}}} = \frac{1}{4}(2{{\lambda }_{2}}{\text{ctg}}{{\alpha }_{2}} + {{\sigma }_{2}}),$$
$${{p}_{{11}}} = - \frac{{{{\lambda }_{1}}{{\sigma }_{1}}}}{{144\sin ({{\alpha }_{1}}{\kern 1pt} /{\kern 1pt} 2){{{\cos }}^{3}}({{\alpha }_{1}}{\text{/2}})}}{{(1 + 2\cos {{\alpha }_{1}})}^{2}},$$
$${{p}_{{21}}} = - \frac{{r{{\lambda }_{2}}{{\sigma }_{2}}}}{{144\sin ({{\alpha }_{2}}/2)\cos 3({{\alpha }_{2}}{\text{/2}})}}{{(1 + 2\cos {{\alpha }_{2}})}^{2}},$$
$${{p}_{{12}}} = {{p}_{{22}}} = 0$$

Consequently, the function \(Q\) can be presented as:

$$Q(\eta ;F) = \frac{{\mu F_{1}^{2}}}{{8{{\lambda }_{1}}}}\frac{{{{Q}_{1}}(\eta )}}{{{{{\sin }}^{5}}{{\alpha }_{1}}(\eta )}} + \frac{{\mu F_{2}^{2}}}{{8{{r}^{2}}{{\lambda }_{2}}}}\frac{{{{Q}_{2}}(\eta )}}{{{{{\sin }}^{5}}{{\alpha }_{2}}(\eta )}},$$

where \({{Q}_{j}}(\eta ) = {{q}_{{j0}}} + {{q}_{{j1}}}\eta + {{q}_{{j2}}}{{\eta }^{2}} + {{q}_{{j3}}}{{\eta }^{3}} + {{q}_{{j4}}}{{\eta }^{4}}\) with coefficients

$${{q}_{{10}}} = {{\sin }^{3}}{{\alpha }_{1}}(2{{\lambda }_{1}} - \sin 2{{\alpha }_{1}}),$$
$${{q}_{{20}}} = {{\sin }^{3}}{{\alpha }_{2}}(2{{\lambda }_{2}} - \sin 2{{\alpha }_{2}}),$$
$${{q}_{{11}}} = - \frac{1}{4}{{\lambda }_{1}}\sin {{\alpha }_{1}}(8\lambda _{1}^{2} - 7 + (8\lambda _{1}^{2} + 4)\cos 2{{\alpha }_{1}} + 3\cos 4{{\alpha }_{1}} + 4{{\lambda }_{1}}\sin 2{{\alpha }_{1}}),$$
$${{q}_{{21}}} = \frac{1}{4}r{{\lambda }_{2}}\sin {{\alpha }_{2}}(8\lambda _{2}^{2} - 7 + (8\lambda _{2}^{2} + 4)\cos 2{{\alpha }_{2}} + 3\cos 4{{\alpha }_{2}} + 4{{\lambda }_{2}}\sin 2{{\alpha }_{2}}),$$
$${{q}_{{12}}} = \frac{{\lambda _{1}^{2}}}{{16}}\left( {\left( {56\lambda _{1}^{2} - 18} \right)\cos {{\alpha }_{1}} + \left( {8\lambda _{1}^{2} + 15} \right)\cos 3{{\alpha }_{1}} + 3\cos 5{{\alpha }_{1}} - 44{{\lambda }_{1}}\sin \alpha _{1}^{{}} - 28{{\lambda }_{1}}\sin 3{{\alpha }_{1}}} \right),$$
$${{q}_{{22}}} = - \frac{{{{r}^{2}}\lambda _{2}^{2}}}{{16}}\left( {\left( {56\lambda _{2}^{2} - 18} \right)\cos {{\alpha }_{2}}{\kern 1pt} {\kern 1pt} + \left( {8\lambda _{2}^{2} + 15} \right)\cos 3{{\alpha }_{2}}{\kern 1pt} {\kern 1pt} + 3\cos 5{{\alpha }_{2}}{\kern 1pt} {\kern 1pt} - 44\lambda _{2}^{{}}\sin {{\alpha }_{2}}{\kern 1pt} {\kern 1pt} - 28{{\lambda }_{2}}\sin 3{{\alpha }_{2}}} \right),$$
$${{q}_{{13}}} = \frac{{\lambda _{1}^{3}}}{4}(28{{\lambda }_{1}}\cos {{\alpha }_{1}} + 4{{\lambda }_{1}}\cos 3{{\alpha }_{1}} - 7\sin {{\alpha }_{1}} - 3\sin 3{{\alpha }_{1}}),$$
$${{q}_{{23}}} = - \frac{{{{r}^{3}}\lambda _{2}^{3}}}{4}(28{{\lambda }_{2}}\cos {{\alpha }_{2}} + 4{{\lambda }_{2}}\cos 3{{\alpha }_{2}} - 7\sin {{\alpha }_{2}} - 3\sin 3{{\alpha }_{2}}),$$
$${{q}_{{14}}} = \frac{{\lambda _{1}^{4}}}{2}(7\cos {{\alpha }_{1}} + \cos 3{{\alpha }_{1}}),\quad {{q}_{{24}}} = \frac{{{{r}^{4}}\lambda _{2}^{4}}}{2}(7\cos {{\alpha }_{2}} + \cos 3{{\alpha }_{2}}).$$

In all the formulas presented above, \({{\alpha }_{1}} = {{\lambda }_{1}}(1 + \eta )\), \({{\alpha }_{2}} = {{\lambda }_{2}}(1 - r\eta )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarenko, N.I., Maltseva, J.L. & Cherevko, A.A. Solitary Waves in a Two-Layer Fluid with Piecewise Exponential Stratification. Fluid Dyn 58, 1235–1245 (2023). https://doi.org/10.1134/S0015462823602218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823602218

Keywords:

Navigation