Skip to main content
Log in

Level Adiabatic Model for the Dissociation of Diatomic Molecules

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In strong shock waves in rarefied gases chemical processes occur under conditions of thermodynamic nonequilibrium. Of great interest is the creation of level models of processes to obtain a rate coefficient. The work presents a new level model for dissociation, obtained within the adiabatic approximation. The model is verified on the basis of available data of quasiclassical trajectory calculations, which analyze the dissociation of N2 molecules in a wide temperature range. Comparison of the model with the Treanor–Marrone model and with existing modifications of the Treanor–Marrone model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. Fiziko-khimicheskie protsessy v gazovoi dinamike (Physical and Chemical Processes in Gas Dynamics), Chernyi, S.A. and Loseva, S.A., Eds., Moscow: MSU, 1995.

    Google Scholar 

  2. Nagnibeda, E.A. and Kustova, E.V., Kineticheskaya teoriya protsessov perenosa i relaksatsii v potokakh neravovesnykh reagiruyushchikh gazov (Kinetic Theory of Transfer and Relaxation Processes in Flows of Non-Equilibrium Reacting Gases), St. Petersburg: St. Petersburg State Univ., 2003.

  3. Kondrat’ev, V.N. and Nikitin, E.E., Kinetika i mekhanizm gazofaznykh reaktsii (Kinetics and Mechanism of Gas-Phase Reactions), Moscow: Nauka, 1974.

  4. Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965.

  5. Krivonosova, O.E., Losev, S.A., Nalivaiko, V.P., Mukoseev, Yu.K., and Shatalov, O.P., Recommended data on constants for the rate of chemical reactions between molecules consisting of N and O atoms, in Khimiya plazmy (Plasma Chemistry), Moscow: Energoatomizdat, 1987, vol. 14, pp. 3–31.

  6. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/welcome.jsp.

  7. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Catalogue of models of physical and chemical processes. Part 3. Thermally equilibrium and non-equilibrium chemical reactions, Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10. http://chemphys.edu.ru/issues/2010-10/articles/333/.

  8. Armenise, I. and Esposito, F., Dissociation-recombination models in hypersonic boundary layer O2/O flows, Chem. Phys., 2012, vol. 398, pp. 104–110.

    Google Scholar 

  9. Armenise, I., Esposito, F., Capitta, G., and Capitelli, M., O–O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations, Chem. Phys., 2008, vol. 351, pp. 91–98.

    Google Scholar 

  10. Bender, J.D., Valentini, P., Nompelis, I., Paukku, Y., Varga, Z., Truhlar, D.G., Schwartzentruber, T., and Candler, G.V., An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions, J. Chem. Phys., 2015, vol. 143, p. 054304. https://doi.org/10.1063/1.4927571

  11. Pogosbekian, M.J., Sergievskaia, A.L., and Losev, S.A., Verification of theoretical models of chemical exchange reactions on the basis of quasiclassical trajectory calculations, Chem. Phys., 2006, vol. 328, no. 1–3, pp. 371–378.

    Google Scholar 

  12. Pogosbekyan, M.Yu. and Losev, S.A., The way to research CO+N → CN+O reactions by means of quasi-classical trajectory by using MD TRAJECTORY software, Khim. Fiz., 2003, vol. 22, no. 6, pp. 38–46.

    Google Scholar 

  13. Grover, M.S. and Schwartzentruber, T.E., Internal energy relaxation and dissociation in molecular oxygen using direct molecular simulation, Proc. 47th AIAA Thermophysical Conf., Denver, CO, 2017, AIAA paper no. 2017-3488. https://doi.org/10.2514/6.2017-3488

  14. Andrienko, D. and Boyd, I.D., Investigation of oxygen vibrational relaxation by quasy-classical trajectory method, Chem. Phys., 2015, vol. 459, no. 28, pp. 1–13. https://doi.org/10.1016/j.chemphys.2015.07.023

    Article  Google Scholar 

  15. Yakunchikov, A., Kosyanchuk, V., Kroupnov, A., Pogosbekian, M., Bryukhanov, I., and Iuldasheva, A., Potential energy surface of interaction of two diatomic molecules for air flows simulation at intermediate temperatures, Chem. Phys., 2020, vol. 536, p. 110850. https://doi.org/10.1016/j.chemphys.2020.110850

  16. Savel’ev, A.S., Models of chemical reaction rate coefficients for nonequilibrium aerodynamics problems, Cand. Sci. (Phys.-Math.) Dissertation, St. Petesrburg, 2018.

  17. Pogosbekyan, M.Yu., Sergievskaya, A.L., and Krupnov, A.A., Comparative simulation of N2 molecule dissociation under thermally nonequilibrium conditions, Tr. Mosk. Aviats. Inst., 2018, no. 102, pp. 1–30.

  18. Smekhov, G.D. and Yalovik, M.S., Nitrogen molecules dissociation in oscillatory non-equilibrium gas, Khim. Fiz., 1996, vol. 15, no. 4, pp. 17–35.

    Google Scholar 

  19. Smekhov, G.D. and Zhluktov, S.V., Dissociation rate constant for bi-atomic molecule in adiabatic model, Khim. Fiz., 1992, vol. 11, no. 9, pp. 1171–1179.

    Google Scholar 

  20. Smekhov, G.D., The way to apply adiabatic principle for calculating bi-atomic molecule dissociation rate constant, in Neravnovesnye techeniya gaza i optimal’nye formy tel v giperzvukovom potoke (Non-Equilibrium Gas Flow and Optimal Body Shapes in Hypersonic Flow), Moscow: MSU, 1982, pp. 30–38.

  21. Smekhov, G.D. and Losev, S.A., Role of oscillating-rotating excitation in dissociation process of bi-atomic molecules, Teor. Eksp. Khim., 1979, vol. 15, no. 5, рр. 492–497.

  22. Sergievskaya, A. and Pogosbekian, M., The study of oxygen dissociation models based on quasi-classical calculations in thermal nonequilibrium conditions, Proc. Int. Conf. on Numerical Analysis and Applied Mathematics, Rhodes, 2016, vol. 1863, pp. 110003-1–110003-4. https://doi.org/10.1063/1.4992288

  23. Pogosbekyan, M.Yu. and Sergievskaya, A.L., The way to simulate oxygen dissociation reaction under thermally non-equilibrium conditions: models, trajectory calculations, experiment, Khim. Fiz., 2018, vol. 37, no. 4, pp. 20–31. https://doi.org/10.7868/S0207401X18040039

    Article  Google Scholar 

  24. Pogosbekyan, M.Yu. and Sergievskaya, A.L., The way to simulate molecular reaction dynamics and comparative analysis with theoretical models applied to thermal nonequilibrium conditions, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, issue 3. http://chemphys.edu.ru/issues/2014-15-3/articles/227/.

  25. Kustova, E.V., Savel’ev, A.S., and Lukasheva, A.A., Refinement of state-resolved models for chemical kinetics by using the trajectory calculations, Fiz.-Khim. Kinet. Gaz. Din., 2018, vol. 19, issue 3. http://chemphys.edu.ru/issues/2018-19-3/articles/767/. https://doi.org/10.33257/PhChGD.19.3.767

  26. Savel’ev, A.S. and Kustova, E.V., Limits of application of the Treanor–Marrone model for N2 and O2 state-to-state dissociation rate coefficients, Vestn. S.-Peterb. Gos. Univ., Ser. 1, 2015, E 2 (60), no. 2, pp. 266–277.

  27. Treanor, C.E. and Marrone, P.V., Effect of dissociation on the rate of vibrational relaxation, Phys. Fluids, 1962, vol. 5, no. 9, pp. 1022–1026.

    ADS  Google Scholar 

  28. Marrone, P.V. and Treanor, C.E., Chemical relaxation with preferential dissociation from excited vibrational levels, Phys. Fluids, 1963, vol. 6, no. 9, pp. 1215–1221.

    ADS  MATH  Google Scholar 

  29. Planetary Entry Integrated Models. http://phys4entrydb.ba.imip.cnr.it/Phys4EntryDB/.

  30. Kovach, E.A., Krivonosova, O.E., Losev, S.A., Mukoseev, Yu.K., Nalivaiko, V.P., Khristenko, A.V., and Shatalov, O.P., Recommended data base for the first version of AVOGARDO system, Scientific Report of Institute of Mechanics of Moscow State Univ., 1986, no. 3312.

Download references

Funding

The work was carried out in accordance with the research plan of Moscow State University Mechanics Research Institute with partial financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 18-01-00741A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Sergievskaya or M. Yu. Pogosbekian.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smekhov, G.D., Sergievskaya, A.L., Pogosbekian, M.Y. et al. Level Adiabatic Model for the Dissociation of Diatomic Molecules. Fluid Dyn 58, 796–810 (2023). https://doi.org/10.1134/S0015462823601079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823601079

Keywords:

Navigation