Skip to main content
Log in

The rate constant of diatomic molecule dissociation within the shock forced oscillator model (SFO model)

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

A numerical analytical investigation of the shock forced oscillator (SFO) model as applied to the “diatomic molecule AB-structureless particle M” system is continued. The SFO model is based on the quantum theory of strong perturbations and allows one to estimate probabilities W if for the transitions from level i to level f of diatomic molecule AB. The numerical analysis was carried out by the example of the nitrogen molecule N2, with anharmonic description of the internuclear interaction potential. The intermolecular interaction potentials in the N2-N2 system are numerically analyzed using the Morse potential, the classical Lennard-Jones potential, and the “improved” Lennard-Jones potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surzhikov, S.T., High Temp., 2011, vol. 49, no. 1, p. 92.

    Article  Google Scholar 

  2. Surzhikov, S.T., High Temp., 2013, vol. 51, no. 2, p. 231.

    Article  Google Scholar 

  3. Kotov, D. and Surzhikov, S.T., High Temp., 2012, vol. 50, no. 1, p. 120.

    Article  Google Scholar 

  4. Tsyganov, D.L., High Temp., 2013, vol. 51, no. 1, p. 90.

    Article  Google Scholar 

  5. Lino da Silva, M., Guerra, V., and Loureiro, J., J. Thermophys. Heat Transfer, 2007, vol. 21, no. 1, p. 40.

    Article  Google Scholar 

  6. Lino da Silva, M., Guerra, V., and Loureiro, J., J. Thermophys. Heat Transfer, 2007, vol. 21, no. 2, p. 303.

    Article  Google Scholar 

  7. Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New York: Wiley, 1990.

    Google Scholar 

  8. Macheret, S.O., AIAA Pap., 1997, paper 97-2501.

    Google Scholar 

  9. Marrone, P.V. and Treanor, C.E., Phys. Fluids, 1963, vol. 6, p. 1215.

    Article  MATH  ADS  Google Scholar 

  10. Losev, S.A., AIAA Pap., 1996, paper 96-2026.

    Google Scholar 

  11. Park, C., J. Thermophys. Heat Transfer, 1988, vol. 8, no. 2, p. 8.

    Article  ADS  Google Scholar 

  12. Park, C., J. Thermophys. Heat Transfer, 1989, vol. 3, no. 3, p. 233.

    Article  ADS  Google Scholar 

  13. Billing, G.D. and Fisher, E.R., Chem. Phys., 1979, vol. 43, no. 3, p. 395.

    ADS  Google Scholar 

  14. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10. http://www.chemphys.edu.ru/pdf/2010-07-08-001.pdf

  15. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10. http://www.chemphys.edu.ru/pdf/2010-07-08-002.pdf

  16. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10. http://www.chemphys.edu.ru/pdf/2010-07-08-003.pdf)

  17. Kovach, E.A., Losev, S.A., Sergievskaya, A.L., and Khrapak, N.A., Fiz.-Khim. Kinet. Gaz. Din., 2010, vol. 10. http://www.chemphys.edu.ru/pdf/2010-07-08-004.pdf)

  18. Fiziko-khimicheskaya kinetika v gazovoi dinamike (Physico-Chemical Kinetics in Gas Dynamics), Chernyi, G.G. and Losev, S.A., Eds., Moscow: Moscow State University, 1986, vol. 1.

    Google Scholar 

  19. Chernyi, G.G., Losev, S.A., Macheret, S.O., and Potapkin, B.P., Physical and Chemical Processes in Gas Dynamics: Cross-Sections and Rate Constants, Reston, Virginia, United States: American Institute of Aeronautics and Astronautics 2002, vol. 1.

    Google Scholar 

  20. Nikitin, E.E., Theory of Elementary Atomic and Molecular Processes in Gases, Oxford, Clarendon, Chap. 7, 1974.

    Google Scholar 

  21. Schwartz, R.N., Slawsky, Z.I., and Herzfeld, K.F., J. Chem. Phys., 1954, vol. 22, p. 767.

    ADS  Google Scholar 

  22. Sharma, S.P., Huo, W., and Park, C., AIAA Pap., 1988, paper 88-2714.

    Google Scholar 

  23. Macheret, S.O. and Adamovich, I.V., J. Chem. Phys., 2000, vol. 113, no. 17, p. 7351.

    ADS  Google Scholar 

  24. Adamovich, I.V., Macheret, S.O., Rich, J.W., and Treanor, C.E., AIAA J., 1995, vol. 33, p. 1064.

    Article  MATH  ADS  Google Scholar 

  25. Adamovich, I.V., Macheret, S.O., Rich, J.W., and Treanor, C.E., AIAA J., 1995, vol. 33, p. 1070.

    Article  ADS  Google Scholar 

  26. Adamovich, I.V., Macheret, S.O., Treanor, C.E., and Rich, J.W., J. Thermophys. Heat Transfer, 1998, vol. 12, no. 1, p. 57.

    Article  Google Scholar 

  27. Adamovich, I.V., Rich, J.W., and Macheret, S.O., J. Thermophys. Heat Transfer, 1997, vol. 11, no. 2, p. 261.

    Article  Google Scholar 

  28. Adamovich, I.V. and Rich, J.W., J. Chem. Phys., 1998, vol. 109, p. 7711.

    ADS  Google Scholar 

  29. Feynman, R.P., Phys. Rev., 1951, vol. 84, p. 108.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Schwinger, J., Phys. Rev., 1953, vol. 91, p. 713.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Zelechow, A., Rapp, D., and Sharp, T.E., J. Chem. Phys., 1968, vol. 49, p. 286.

    ADS  Google Scholar 

  32. Kerner, E.H., Can. J. Phys., 1958, vol. 36, no. 3, p. 58.

    Article  Google Scholar 

  33. Treanor, E.N., J. Chem. Phys., 1965, vol. 43, p. 532.

    ADS  Google Scholar 

  34. Tsyganov, D.L., High Temp., 2014, vol. 52, no. 1, p. 48.

    Article  Google Scholar 

  35. Anisimova, I.V., Ignat’ev, V.N., and Takseitov, R.R., Russ. Aeronaut. (IZ VUZ), 2007, vol. 50, no. 3, p. 326.

    Article  Google Scholar 

  36. Cottrell, T.L. and Ream, N., Trans. Faraday Soc., 1955, vol. 51, p. 159.

    Article  Google Scholar 

  37. Bakhvalov, N.S., Zhidkov, N.P., and Kobel’kov, G.M., Chislennye metody (Numerical Methods), 4th ed., Moscow: BINOM Laboratoriya Znanii 2006.

    Google Scholar 

  38. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, Volume 3: Quantum Mechanics: Non-Relativistic Theory, Oxford: Butterworth-Heinemann, 1991.

    Google Scholar 

  39. Lino da Silva, M., Guerra, V., Loureiro, J., and Sa, P.A., Chem. Phys., 2008, vol. 348, p. 187.

    ADS  Google Scholar 

  40. Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, Toronto, Canada: National Research Council of Canada, 1979.

    Book  Google Scholar 

  41. Numerov, B.V., Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, 1932, no. 1, p 1.

    Google Scholar 

  42. Vainshtein, L.A., Sobel’man, I.I., and Yukov, E.A., Vozbuzhdenie atomov i ushirenie spektral’nykh linii (Excitation of Atoms and Broadening of Spectral Lines), Moscow: Nauka, 1979.

    Google Scholar 

  43. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, Volume 1: Mechanics, Oxford: Butterworth-Heinemann, 2005.

    Google Scholar 

  44. Kaplan, I.G., Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii (Introduction to the Theory of Intermolecular Interactions), Moscow: Nauka, 1982.

    Google Scholar 

  45. Arrhenius, S.Z., Phys. Chem, 1889, vol. 4, p. 226.

    Google Scholar 

  46. NIST Chemical Kinetics Database. http://kinetics.nist.gov/.

  47. Kewley, D.J. and Hornung, H.G., Chem. Phys. Lett., 1974, vol. 25, p. 531.

    ADS  Google Scholar 

  48. Hanson, R.K. and Baganoff, D., AIAA J., 1972, vol. 10, p. 211.

    Article  ADS  Google Scholar 

  49. Appleton, J.P., Steinberg, M., and Liquornik, D.J., J. Chem. Phys., 1968, vol. 48, p. 599.

    ADS  Google Scholar 

  50. Byron, S., J. Chem. Phys., 1966, vol. 44, p. 1378.

    ADS  Google Scholar 

  51. Cary, B., Phys. Fluids, 1965, vol. 8, p. 26.

    Article  ADS  Google Scholar 

  52. Lemmon, E.W. and Jacobsen, R.T., Int. J. Thermophys., 2004, vol. 25, no. 1, p. 21.

    Article  ADS  Google Scholar 

  53. Fokin, L.R. and Kalashnikov, A.N., High Temp., 2009, vol. 47, no. 5, p. 643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Tsyganov.

Additional information

Original Russian Text © D.L. Tsyganov, 2014, published in Teplofizika Vysokikh Temperatur, 2014, Vol. 52, No. 4, pp. 543–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, D.L. The rate constant of diatomic molecule dissociation within the shock forced oscillator model (SFO model). High Temp 52, 518–529 (2014). https://doi.org/10.1134/S0018151X14030274

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X14030274

Keywords

Navigation