Skip to main content
Log in

On the Theory of Magneto-Induced Circulations in Trombosed Channels

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The mathematical model and the method of its approximate analysis dealing with flows induced by a traveling magnetic field in a channel occupied by non-magnetic fluid with an embedded ferrofluid drop are proposed. One of the ends of the channel is assumed to be closed (thrombotic). The aim of the study is to develop the scientific basis for magnetically induced intensification of drug transport through thrombosed blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Creighton, Francis M., Magnetic-based systems for treating occluded vessels: U.S. Patent No. 8.308.628, 2012.

  2. Clements, M.J., A mathematical Model for Magnetically-Assisted Delivery of Thrombolytics in Occluded Blood Vessels for Ischemic Stroke Treatment: Doctoral dissertation, Texas University, 2016.

  3. Gabayno, J.L.F., Liu, D.W., Chang, M., and Lin, Y.H., Nanoscale, 2015, vol. 7, no. 9, pp. 3947–3953. https://doi.org/10.1039/x0xx00000x

    Article  ADS  Google Scholar 

  4. Li, Q., Liu, X., Chang, M., and Lu, Z., Materials, 2018, vol. 11, no. 11, pp. 2313–2325.

    Article  ADS  Google Scholar 

  5. Musikhin, A., Zubarev, A., Raboisson-Michel, M., Verger-Dubois, G., and Kuzhir, P., Phil. Trans. R. Soc. A, 2020, vol. 378, p. 20190250.

  6. Chirikov, D., Zubarev, A., Kuzhir, P., Raboisson-Michel, M., and Verger-Dubois, G., Eur. Phys. J. Spec. Top., 2022, vol. 231, pp. 1187–1194.

    Article  Google Scholar 

  7. Rosensweig, R., Ferrohydrodynamics, New York: Cambridge, 1985.

  8. Pokrovskii, V., Statisticheskaya mekhanika razbavlennykh suspenzii (Statistical Mechanics of Dilute Suspensions), Moscow: Nauka, 1978.

  9. Odenbach, S., Magnetoviscous Effect in Ferrofluids, Springer, 2002.

    Book  MATH  Google Scholar 

  10. Onsager, L., Ann. N.Y. Acad. Sci., 1949, vol. 5, p. 627.

    Article  ADS  Google Scholar 

  11. de Gennes, P.G., The Physics of Liquid Crystals, Oxford: Clarendon Press, 1974.

    MATH  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Russian Foundation for Basic Research (project no. 21-52-12013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Musikhin.

Additional information

Translated by E.A. Pushkar

APPENDIX

APPENDIX

To calculate the components of the amplitudes \({{H}_{{01}}}\), \({{H}_{{02}}}\), \({{H}_{{03}}}\), and \({{H}_{{04}}}\) of the magnetic fields generated by the solenoids in Fig. 1, the Biot–Savart–Laplace law is used in formula (1.1):

$${{H}_{{01x}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{-\left( {h + a} \right)}^{-a} dz'\left( {\mathop \int \limits_0^{2\pi } \frac{{\left( {z - z{\kern 1pt} '} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {z - z{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {x-{{x}_{0}} - \frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{01z}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{-\left( {h + a} \right)}^{-a} dz'\left( {\mathop \int \limits_0^{2\pi } \frac{{\frac{D}{2}-\left( {x-{{x}_{0}}} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {z - z{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {x-{{x}_{0}} - \frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{02x}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{a + l}^{a + l + h} dz'\left( {\mathop \int \limits_0^{2\pi } \frac{{\left( {z - z{\kern 1pt} '} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {z - z{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {x - {{x}_{0}}-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{02z}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{a + l}^{a + l + h} dz'\left( {\mathop \int \limits_0^{2\pi } \frac{{\frac{D}{2}-\left( {x-{{x}_{0}}} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {z-z{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {x-{{x}_{0}}-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{03x}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{-\left( {b + {{x}_{0}}} \right)}^{-\left( {h + b + {{x}_{0}}} \right)} dx'\left( {\mathop \int \limits_0^{2\pi } \frac{{\frac{D}{2} - \left( {z + l{\text{/}}2} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {x-x{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {\left( {z + l{\text{/}}2} \right)-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{03z}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{-\left( {b + {{x}_{0}}} \right)}^{-\left( {h + b + {{x}_{0}}} \right)} dx'\left( {\mathop \int \limits_0^{2\pi } \frac{{\left( {x-x{\kern 1pt} '} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {x-x{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {\left( {z + l{\text{/}}2} \right)-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{04x}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{b-{{x}_{0}}}^{h + b-{{x}_{0}}} dx'\left( {\mathop \int \limits_0^{2\pi } \frac{{\frac{D}{2} - \left( {z + l{\text{/}}2} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {x-x{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {\left( {z + l{\text{/}}2} \right)-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right),$$
$${{H}_{{04z}}}\left( {x,z} \right) = \frac{{IDN}}{{8\pi h}}\mathop \int \limits_{b-{{x}_{0}}}^{h + b-{{x}_{0}}} dx{\kern 1pt} '\left( {\mathop \int \limits_0^{2\pi } \frac{{\left( {x-x{\kern 1pt} '} \right)\cos {{\varphi }}}}{{{{{\left[ {{{{\left( {x - x{\kern 1pt} '} \right)}}^{2}} + {{{\left( {\frac{D}{2}\sin {{\varphi }}} \right)}}^{2}} + {{{\left( {\left( {z + \frac{l}{2}} \right)-\frac{D}{2}\cos {{\varphi }}} \right)}}^{2}}} \right]}}^{{\frac{3}{2}}}}}}d{{\varphi }}} \right).$$

where I is the electric current in the solenoid, h is the height of the solenoid, N is the number of turns in it, а is the distance from the vertical solenoids to the vessel, b is the distance from the horizontal solenoids to the center of the ferrofluid cloud whose coordinate along the channel axis is equal to  –x0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musikhin, A.Y., Zubarev, A.Y. On the Theory of Magneto-Induced Circulations in Trombosed Channels. Fluid Dyn 58, 339–348 (2023). https://doi.org/10.1134/S0015462822601619

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601619

Keywords:

Navigation